Popis předmětu - B3B01KAT1

Přehled studia | Přehled oborů | Všechny skupiny předmětů | Všechny předměty | Seznam rolí | Vysvětlivky               Návod
B3B01KAT1 Komplexní analýza a transformace
Role:P Rozsah výuky:4P+2S
Katedra:13101 Jazyk výuky:CS
Garanti:Bohata M. Zakončení:Z,ZK
Přednášející:Bohata M. Kreditů:6
Cvičící:Bohata M., Turčinová H. Semestr:Z

Webová stránka:

https://math.fel.cvut.cz/en/people/hamhalte/kat

Anotace:

Student se seznámí se základy teorie funkcí komplexní proměnné a jejími aplikacemi. Budou vysvětleny základní principy Fourierovy, Laplaceovy a Z-transformace, včetně aplikací zejména na řešení diferenciálních a diferenčních rovnic.

Osnovy přednášek:

1. Komplexní čísla. Limita a derivace funkce komplexní proměnné.
2. Cauchy-Riemannovy podmínky, holomorfnost. Harmonické funkce.
3. Elementární funkce.
4. Křivkový integrál, Cauchyova věta a Cauchyův integrální vzorec.
5. Reprezentace holomorfní funkce mocninnou řadou.
6. Laurentovy řady. Izolované singularity.
7. Reziduum. Reziduová věta a její aplikace.
8. Z-transformace a její aplikace Z-transformace.
9. Základní vlastnosti Laplaceovy transformace.
10. Inverzní Laplaceova transformace. Aplikace Laplaceovy transformace.
11. Fourierovy řady a základní vlastnosti Fourierovy transformace.
12. Věta o inverzní Fourierově transformaci. Aplikace Fourierovy transformace.
13. Diskrétní Fourierova transformace.
14. Rezerva.

Osnovy cvičení:

1. Komplexní čísla. Limita a derivace funkce komplexní proměnné.
2. Cauchy-Riemannovy podmínky, holomorfnost. Harmonické funkce.
3. Elementární funkce.
4. Křivkový integrál, Cauchyova věta a Cauchyův integrální vzorec.
5. Reprezentace holomorfní funkce mocninnou řadou.
6. Laurentovy řady. Izolované singularity.
7. Reziduum. Reziduová věta a její aplikace.
8. Základní vlastnosti Z-transformace.
9. Inverzní Z-transformace. Aplikace Z-transformace.
10. Základní vlastnosti Laplaceovy transformace.
11. Inverzní Laplaceova transformace. Aplikace Laplaceovy transformace.
12. Fourierovy řady a základní vlastnosti Fourierovy transformace.
13. Věta o inverzní Fourierově transformaci. Aplikace Fourierovy transformace.
14. Rezerva.

Literatura:

1. J. Hamhalter, J.Tišer: Funkce komplexní proměnné, Skripta FEL ČVUT, 2017.
2. H. A. Priestly: Introduction to Complex Analysis, Oxford University Press, 2003.
3. A. D. Wunsch: Complex variables with Applications, Third Edition, Pearson 2005.
4. L. Debnath: Integral Transforms and their Applications, CRC Press, Inc., 1995
5. J. L. Schiff: The Laplace transform, Theory and Applications. Springer Verlag, 1996.
6. J. Veit: Integrální transformace, XIV, SNTL, Praha 1979.
Elektronické materiály:
1. M. Bohata, J. Hamhalter: Integrální transformace: https://math.fel.cvut.cz/en/people/bohatmar/kan/transformace.pdf
2. M. Bohata, J. Hamhalter: Sbírka úloh z komplexní analýzy a integrálních transformací: https://math.fel.cvut.cz/en/people/bohatmar/kan/sbirka.pdf

Požadavky:

Předmět je zahrnut do těchto studijních plánů:

Plán Obor Role Dop. semestr
BPKYR_2021 Před zařazením do oboru P 3


Stránka vytvořena 23.11.2024 11:50:56, semestry: L/2023-4, Z,L/2024-5, Z/2025-6, připomínky k informační náplni zasílejte správci studijních plánů Návrh a realizace: I. Halaška (K336), J. Novák (K336)