Popis předmětu - B6B01MAA

Přehled studia | Přehled oborů | Všechny skupiny předmětů | Všechny předměty | Seznam rolí | Vysvětlivky               Návod
B6B01MAA Matematická analýza
Role:P Rozsah výuky:2P+2S+2D
Katedra:13101 Jazyk výuky:
Garanti:Žukovec N. Zakončení:Z,ZK
Přednášející:Žukovec N. Kreditů:5
Cvičící:Pospíšil K., Žukovec N. Semestr:Z

Webová stránka:

https://moodle.fel.cvut.cz/courses/B6B01MAA

Anotace:

Předmět je úvodem do diferenciálního a integrálního počtu funkcí jedné proměnné. Pokrývá základní vlastnosti funkcí, limitu funkcí, derivaci a její aplikace (průběh funkce, Taylorův polynom), určitý/neurčitý integrál s aplikacemi, posloupnosti a řady.

Osnovy přednášek:

1. Úvod do matematické analýzy, základní principy kalkulu.
2. Reálná čísla, základní matematická terminologie.
3. Funkce, elementární funkce.
4. Limita funkce, spojitost.
5. Derivace funkce, její vlastnosti a význam.
6. L'Hospitalovo pravidlo, Taylorův polynom
7. Extrémy funkcí. Průběh funkce
8. Neurčitý integrál, základní metody výpočtu.
9. Integrace racionálních funkcí přes parciální zlomky.
10. Určitý integrál, vlastnosti a výpočet.
11. Nevlastní integrál, aplikace integrálu.
12. Posloupnosti.
13. Řady.
14. Rezerva.

Osnovy cvičení:

Osnovy cvičení navazují na osnovy přednášek. Zatímco na přednášce se klade důraz na porozumění souvislostí a zdůvodnění, proč jednotlivá tvrzení platí, na cvičení se studenti zabývají rutinními postupy při řešení jednotlivých úloh.
1. Úvod do matematické analýzy, základní principy kalkulu.
2. Reálná čísla, základní matematická terminologie.
3. Funkce, elementární funkce.
4. Limita funkce, spojitost.
5. Derivace funkce, její vlastnosti a význam.
6. L'Hospitalovo pravidlo, Taylorův polynom
7. Extrémy funkcí. Průběh funkce
8. Neurčitý integrál, základní metody výpočtu.
9. Integrace racionálních funkcí přes parciální zlomky.
10. Určitý integrál, vlastnosti a výpočet.
11. Nevlastní integrál, aplikace integrálu.
12. Posloupnosti.
13. Řady.
14. Rezerva.

Literatura:

Povinná literatura:
1. J. Tkadlec: Diferenciální a integrální počet funkcí jedné proměnné. ČVUT Praha, 2004.
2. L. Průcha: Řady, ČVUT Praha, 2005.
Doporučená literatura:
1. Math Tutor http://math.feld.cvut.cz/mt

Požadavky:

Středoškolská matematika.

Předmět je zahrnut do těchto studijních plánů:

Plán Obor Role Dop. semestr
BPSIT_2021 Před zařazením do oboru P 3
BPSIT4_2021 Technologie internetu věcí P 3
BPSIT3_2021 Business informatics P 3
BPSIT2_2021 Technologie pro multimédia a virtuální realitu P 3
BPSIT1_2021 Enterprise systémy P 3
BPSIT Před zařazením do oboru P 3


Stránka vytvořena 11.10.2024 09:52:27, semestry: L/2023-4, Z,L/2024-5, Z/2025-6, připomínky k informační náplni zasílejte správci studijních plánů Návrh a realizace: I. Halaška (K336), J. Novák (K336)