Popis předmětu - B3B01KAT

Přehled studia | Přehled oborů | Všechny skupiny předmětů | Všechny předměty | Seznam rolí | Vysvětlivky               Návod
B3B01KAT Komplexní analýza a transformace
Role:P Rozsah výuky:4P+2S
Katedra:13101 Jazyk výuky:CS
Garanti:Hamhalter J. Zakončení:Z,ZK
Přednášející:Bohata M., Hamhalter J., Mihula Z. Kreditů:7
Cvičící:Bohata M., Hamhalter J., Mihula Z., Tkadlec J. Semestr:Z

Webová stránka:

https://moodle.fel.cvut.cz/courses/B3B01KAT

Anotace:

Student se seznámí se základy teorie funkcí komplexní proměnné a jejími aplikacemi. Budou vysvětleny základní principy Fourierovy, Laplaceovy a Z-transformace, včetně aplikací zejména na řešení diferenciálních a diferenčních rovnic.

Osnovy přednášek:

1. Komplexní čísla. Limita a derivace funkce komplexní proměnné.
2. Cauchy-Riemannovy podmínky, holomorfnost. Harmonické funkce.
3. Elementární funkce. Aplikace lineárního lomeného zobrazení.
4. Křivkový integrál, Cauchyova věta a Cauchyův integrální vzorec.
5. Reprezentace holomorfní funkce mocninnou řadou.
6. Laurentovy řady. Izolované singularity.
7. Reziduum. Reziduová věta a její aplikace.
8. Základní vlastnosti Fourierovy transformace.
9. Věta o inverzní Fourierově transformaci. Aplikace Fourierovy transformace.
10. Základní vlastnosti Laplaceovy transformace.
11. Inverzní Laplaceova transformace. Metoda odštěpení pólů. Aplikace Laplaceovy transformace.
12. Základní vlastnosti Z-transformace.
13. Inverzní Z-transformace. Aplikace Z-transformace.
14. Rezerva

Osnovy cvičení:

Stejná jako osnova přednášek.

Literatura:

1. J. Hamhalter, J.Tišer: Funkce komplexní proměnné, Skripta FEL ČVUT, 2017.
2. H. A. Priestly: Introduction to Complex Analysis, Oxford University Press, 2003.
3. A. D. Wunsch: Complex variables with Applications, Third Edition, Pearson 2005.
4. L. Debnath: Integral Transforms and their Applications, CRC Press, Inc., 1995
5. J. L. Schiff: The Laplace transform, Theory and Applications. Springer Verlag, 1996.
6. J. Veit: Integrální transformace, XIV, SNTL, Praha 1979.
Elektronické materiály:
1. M. Bohata, J. Hamhalter: Integrální transformace: http://math.feld.cvut.cz/bohata/kan/transformace.pdf
2. M. Bohata, J. Hamhalter: Sbírka úloh z komplexní analýyzy a integrálních transformací: http://math.feld.cvut.cz/bohata/kan/sbirka.pdf

Požadavky:

Informace viz http://math.feld.cvut.cz/0educ/pozad/b3b01kat.htm

Předmět je zahrnut do těchto studijních plánů:

Plán Obor Role Dop. semestr
BPKYR_2016 Před zařazením do oboru P 3


Stránka vytvořena 7.6.2023 14:50:09, semestry: Z/2023-4, Z/2024-5, L/2022-3, připomínky k informační náplni zasílejte správci studijních plánů Návrh a realizace: I. Halaška (K336), J. Novák (K336)