Popis předmětu - BD6B01MAA
| BD6B01MAA | Matematická analýza | ||
|---|---|---|---|
| Role: | P | Rozsah výuky: | 14KP+6KC |
| Katedra: | 13101 | Jazyk výuky: | |
| Garanti: | Zakončení: | Z,ZK | |
| Přednášející: | Kreditů: | 5 | |
| Cvičící: | Semestr: | Z | |
Webová stránka:
https://math.fel.cvut.cz/en/people/zhukavet/b6b01maa.htmlAnotace:
Předmět je úvodem do diferenciálního a integrálního počtu funkcí jedné proměnné. Pokrývá základní vlastnosti funkcí, limitu funkcí, derivaci a její aplikace (průběh funkce, Taylorův polynom), určitý/neurčitý integrál s aplikacemi, posloupnosti a řady.Osnovy přednášek:
| 1. | Úvod do matematické analýzy, základní principy kalkulu. | |
| 2. | Reálná čísla, základní matematická terminologie. | |
| 3. | Funkce, elementární funkce. | |
| 4. | Limita funkce, spojitost. | |
| 5. | Derivace funkce, její vlastnosti a význam. | |
| 6. | L'Hospitalovo pravidlo, Taylorův polynom. | |
| 7. | Extrémy funkcí. Průběh funkce. | |
| 8. | Neurčitý integrál, základní metody výpočtu. | |
| 9. | Integrace racionálních funkcí přes parciální zlomky. | |
| 10. | Určitý integrál, vlastnosti a výpočet. | |
| 11. | Nevlastní integrál, aplikace integrálu. | |
| 12. | Posloupnosti. | |
| 13. | Řady. |
Osnovy cvičení:
Osnovy cvičení navazují na osnovy přednášek. Zatímco na přednášce se klade důraz na porozumění souvislostí a zdůvodnění, proč jednotlivá tvrzení platí, na cvičení se studenti zabývají rutinními postupy při řešení jednotlivých úloh.| 1. | Úvod do matematické analýzy, základní principy kalkulu. | |
| 2. | Reálná čísla, základní matematická terminologie. | |
| 3. | Funkce, elementární funkce. | |
| 4. | Limita funkce, spojitost. | |
| 5. | Derivace funkce, její vlastnosti a význam. | |
| 6. | L'Hospitalovo pravidlo, Taylorův polynom | |
| 7. | Extrémy funkcí. Průběh funkce | |
| 8. | Neurčitý integrál, základní metody výpočtu. | |
| 9. | Integrace racionálních funkcí přes parciální zlomky. | |
| 10. | Určitý integrál, vlastnosti a výpočet. | |
| 11. | Nevlastní integrál, aplikace integrálu. | |
| 12. | Posloupnosti. | |
| 13. | Řady. |
Literatura:
Povinná literatura:| 1. | J. Tkadlec: Diferenciální a integrální počet funkcí jedné proměnné. ČVUT Praha, 2004. | |
| 2. | L. Průcha: Řady, ČVUT Praha, 2005. |
| 1. | Math Tutor http://math.feld.cvut.cz/mt |
Požadavky:
Středoškolská matematika.Předmět je zahrnut do těchto studijních plánů:
| Plán | Obor | Role | Dop. semestr |
| BKSIT | Před zařazením do oboru | P | 3 |
| Stránka vytvořena 14.11.2025 17:51:45, semestry: L/2025-6, Z/2026-7, L/2024-5, Z/2025-6, L/2026-7, připomínky k informační náplni zasílejte správci studijních plánů | Návrh a realizace: I. Halaška (K336), J. Novák (K336) |