Popis předmětu - B1B01MEK

Přehled studia | Přehled oborů | Všechny skupiny předmětů | Všechny předměty | Seznam rolí | Vysvětlivky               Návod
B1B01MEK Matematika pro ekonomii
Role:PZ Rozsah výuky:3P+2S
Katedra:13101 Jazyk výuky:CS
Garanti:Helisová K. Zakončení:Z,ZK
Přednášející:Helisová K., Staněk J. Kreditů:5
Cvičící:Helisová K., Staněk J. Semestr:L

Webová stránka:

https://math.fel.cvut.cz/en/people/heliskat/01mekA1M01MPE.html

Anotace:

Cílem předmětu je vyložit základy pravděpodobnosti a statistiky, podat průřezovou informaci o náhodných procesech, speciálně pak o Markovských řetězcích, a ukázat aplikace těchto matematických nástrojů v ekonomice a pojišťovnictví.

Osnovy přednášek:

1. Základy pravděpodobnosti - náhodný jev, podmíněná pravděpodobnost, Bayesova věta
2. Náhodná veličina - definice, distribuční funkce, základní charakteristiky náhodných veličin - střední hodnota, rozptyl.
3. Význam některých diskrétních náhodných veličin v ekonomice, Poissonovo a binomické rozdělení.
4. Význam některých spojitých náhodných veličin v ekonomice, exponenciální a normální rozdělení.
5. Náhodný vektor - definice, popis, marginální rozdělení, kovariance a korelace, nezávislost náhodných veličin.
6. Centrální limitní věta - využití pro základní výpočty, její význam ve statistice a v ekonomii.
7. Základní pojmy ve statistice - náhodný výběr, výběrový průměr, výběrový rozptyl, kvantil, empirická distribuční funkce, histogram, krabicový graf.
8. Aplikace pravděpodobnosti ve statistice – bodové a intervalové odhady, testování hypotéz.
9. Náhodné procesy - základní pojmy.
10. Markovské řetězce s diskrétním časem - vlastnosti, matice pravděpodobností přechodu, klasifikace stavů.
11. Markovské řetězce se spojitým časem - vlastnosti, matice pravděpodobností přechodu, klasifikace stavů.
12. Praktické využití náhodných procesů - Wienerův proces, Poissonův proces, aplikace.
13. Regresní analýza.
14. Tvorba rezerv - základní pravděpodobnostní rozdělení počtu a výše škod, trojúhelníková schémata, Markovské řetězce v bonusových systémech.

Osnovy cvičení:

Literatura:

[1] Navara, M.: Pravděpodobnost a matematická statistika. ČVUT, Praha 2007.
[2] Prášková, Z., Lachout, P.: Základy náhodných procesů. Karolinum, Praha 1998.
[3] Mandl, P., Mazurová, L.: Matematické základy neživotního pojištění. Matfyzpress, Praha 1999.
[4] Cipra, T.: Finanční ekonometrie. 1. vydání. Ekopress, Praha 2008.
[5] Studijní materiály (rozšířený text přednášky, prezentace, příklady na procvičení) dostupné na webové stránce předmětu, na niž je odkaz v Moodle.

Požadavky:

Předmět je zahrnut do těchto studijních plánů:

Plán Obor Role Dop. semestr
BPEEM2_2018 Elektrotechnika a management PZ 4


Stránka vytvořena 16.5.2025 17:52:53, semestry: Z,L/2026-7, Z,L/2024-5, Z,L/2025-6, připomínky k informační náplni zasílejte správci studijních plánů Návrh a realizace: I. Halaška (K336), J. Novák (K336)