# Popis předmětu - BE3M35SSM

Přehled studia | Přehled oborů | Všechny skupiny předmětů | Všechny předměty | Seznam rolí | Vysvětlivky               Návod
BE3M35SSM Space systems, modeling and identification
Role:P Rozsah výuky:4P+2C
Katedra:13135 Jazyk výuky:EN
Garanti:  Zakončení:Z,ZK
Přednášející:Hušek P. Kreditů:7
Cvičící:Hušek P. Semestr:Z

Anotace:

The aim of the course is to introduce basic concepts and methods for analysis, modelling and control design of linear dynamical systems such as different kinds of system models (differential equation, transfer function, time and frequency responses, state space models), commonly used concepts of stability (Lyapunov, asymptotic, BIBO), reachability and observability, step response and frequency response based output feedback controller design, state feedback and state observation. The course should serve as an introduction into the world of system analysis and design and should provide the background for study of advanced control design approaches.

Výsledek studentské ankety předmětu je zde: XE35SSM

Cíle studia:

The main aim of the course is to introduce the basic concepts and terminology used in the analysis of single-input single-output linear dynamical systems as well as to mention the basic schemes for feedback control of those systems and standard tools for controller design. Even though especially the methods for linear controller design can be directly applied in practice the course should serve as a background for advanced courses on control approaches (robust, optimal, MIMO, stochastic). The course includes an introduction to identification of the models via least-squares techniques, different continuous and discrete-time models and their relations, different concepts of stability, reachability and observability, frequency and time responses based controller design methods and linear state feedback and observation including the basics of linear quadratic controller and estimator.

Osnovy přednášek:

 1 Dynamical system, examples, kinds, properties. Description by differential equations and state space equations. 2 Linear systems, principle of superposition, convolution integral, impulse and step response. Laplace transform, transfer function, Fourier transform, frequency response. Time delay. Discrete-time systems, difference equation, Z-transform. 3 Zeros and poles, their effect on time responses, connection of differential and state-space equations, system realization, state transformation. Solution of state-space equations, modes. 4 Linearization. Stability. 5 Reachability, controllability, observability, constructability. 6 Feedback, scheme, transfer functions, control requirements in time and frequency domain. 7 PID control, root locus. 8 Nyquist stability criterion, frequency response based design. Lead and lag compensators. 9 State feedback, observer, state feedback with observer. 10 Algebraic control, digital control.

Osnovy cvičení:

Literatura:

 1 G. F. Franklin, J. D. Powell, A. Emami-Naeini: Feedback Control of Dynamic Systems, 4-th edition, Prentice Hall, 2002 2 P. J. Antsaklis, A. N. Michel: A Linear Systems Primer, Birkhauser, 2007

Požadavky:

Předmět je zahrnut do těchto studijních plánů:

 Plán Obor Role Dop. semestr SPACEMASTER_2020 Před zařazením do oboru P 3 SPACEMASTER_2018 Kybernetika a robotika P 3 SPACEMASTER_II Kybernetika a robotika P 3

 Stránka vytvořena 19.5.2024 15:50:46, semestry: Z/2024-5, Z,L/2023-4, připomínky k informační náplni zasílejte správci studijních plánů Návrh a realizace: I. Halaška (K336), J. Novák (K336)