Popis předmětu - BE5B01LAL
BE5B01LAL | Linear Algebra | ||
---|---|---|---|
Role: | P | Rozsah výuky: | 4P+2S |
Katedra: | 13101 | Jazyk výuky: | EN |
Garanti: | Vivi P. | Zakončení: | Z,ZK |
Přednášející: | Vivi P. | Kreditů: | 8 |
Cvičící: | Vivi P. | Semestr: | Z |
Webová stránka:
https://math.fel.cvut.cz/en/people/vivipaol/BE5B01LAL.htmlAnotace:
The course covers standard basics of matrix calculus (determinants, inverse matrix) and linear algebra (basis, dimension, inner product spaces, linear transformations) including eigenvalues and eigenvectors. Matrix similarity, orthogonal bases, and bilinear and quadratic forms are also covered.Osnovy přednášek:
1. | Polynomials. Introduction to systems of linear equations and Gauss elimination method. | |
2. | Linear spaces, linear dependence and independence. | |
3. | Basis, dimension, coordinates of vectors. | |
4. | Matrices: operations, rank, transpose. | |
5. | Determinant and inverse of a matrix. | |
6. | Structure of solutions of systems of linear equations. Frobenius Theorem. | |
7. | Linear mappings. Matrix of a linear mapping. | |
8. | Free vectors. Dot product and cross product. | |
9. | Lines and planes in 3-dimensional real space. | |
10. | Eigenvalues and eigenvectors of matrices and linear mappings. | |
11. | Similarity of matrices, matrices similar to diagonal matrices. | |
12. | Euclidean space, orthogonalization, orthonormal basis. Fourier basis. | |
13. | Introduction to bilinear and quadratic forms. |
Osnovy cvičení:
1. | Polynomials. Introduction to systems of linear equations and Gauss elimination method. | |
2. | Linear spaces, linear dependence and independence. | |
3. | Basis, dimension, coordinates of vectors. | |
4. | Matrices: operations, rank, transpose. | |
5. | Determinant and inverse of a matrix. | |
6. | Structure of solutions of systems of linear equations. Frobenius Theorem. | |
7. | Linear mappings. Matrix of a linear mapping. | |
8. | Free vectors. Dot product and cross product. | |
9. | Lines and planes in 3-dimensional real space. | |
10. | Eigenvalues and eigenvectors of matrices and linear mappings. | |
11. | Similarity of matrices, matrices similar to diagonal matrices. | |
12. | Euclidean space, orthogonalization, orthonormal basis. Fourier basis. | |
13. | Introduction to bilinear and quadratic forms. |
Literatura:
1. | P. Pták: Introduction to Linear Algebra. ČVUT, Praha, 2005. | |
2. | P. Pták: Introduction to Linear Algebra. ČVUT, Praha, 1997. |
Požadavky:
https://math.fel.cvut.cz/en/people/vivipaol/LAL2015.pdfPředmět je zahrnut do těchto studijních plánů:
Plán | Obor | Role | Dop. semestr |
BEECS | Před zařazením do oboru | P | 1 |
BPEECS_2018 | Před zařazením do oboru | P | 1 |
Stránka vytvořena 21.11.2024 09:52:04, semestry: Z/2024-5, Z/2025-6, L/2024-5, L/2023-4, připomínky k informační náplni zasílejte správci studijních plánů | Návrh a realizace: I. Halaška (K336), J. Novák (K336) |