Popis předmětu - BE4M33GVG
BE4M33GVG | Geometry of Computer Vision and Graphics | ||
---|---|---|---|
Role: | PO | Rozsah výuky: | 2P+2C |
Katedra: | 13133 | Jazyk výuky: | EN |
Garanti: | Pajdla T. | Zakončení: | Z,ZK |
Přednášející: | Pajdla T., Sattler T. | Kreditů: | 6 |
Cvičící: | Korotynskiy V., Matoušek M., Pajdla T., Pánek V. | Semestr: | L |
Webová stránka:
https://cw.fel.cvut.cz/wiki/courses/gvg/startAnotace:
We will explain fundamentals of image and space geometry including Euclidean, affine and projective geometry, the model of a perspective camera, image transformations induced by camera motion, and image normalization for object recognition. The theory will be demonstrated on practical task of creating mosaics from images, measuring the geometry of objects by a camera, and reconstructing geometrical properties of objects from their projections. We will build on linear algebra and optimization and lay down foundation for other subjects such as computational geometry, computer vision, computer graphics, digital image processing and recognition of objects in images.Cíle studia:
The goal is to present the theoretical background for modelling of perspective cameras and solving tasks of measurement in images and scene reconstruction.Osnovy přednášek:
1. | Geometry of computer vision and graphics and how to study it. | |
2. | Linear and affine spaces. | |
3. | Position and its representation. | |
4. | Mathematical model for perspective camera. | |
5. | Perspective camera calibration and pose computatation. | |
6. | Homography. | |
7. | Invariance and covariant constructions. | |
8. | Projective plane, ideal points and ideal line, vanishing points and horizon. | |
9. | Camera calibration from vanishing points and from planar homography. | |
10. | Projective space. Points, lines, planes. | |
11. | Angle and distace in the projective space. | |
12. | Auticalibration of perspective camera. | |
13. | Epipolar geometry. | |
14. | 3D reconstruction from images. |
Osnovy cvičení:
1 Introduction, a-test 2-4 Linear algebra and optimization tools for computing with geometrical objects 5-6 Cameras in affine space - assignment I 7-8 Geometry of objects and cameras in projective space - assignment II 9-10 Principles of randomized algorithms - assignment III. 11-14 Randomized algorithms for computing scene geometry - assignment IV.Literatura:
[1] | P. Ptak. Introduction to Linear Algebra. Vydavatelstvi CVUT, Praha, 2007. | |
[2] | E. Krajnik. Maticovy pocet. Skriptum. Vydavatelstvi CVUT, Praha, 2000. | |
[3] | R. Hartley, A.Zisserman. Multiple View Geometry in Computer Vision. |
[4] | M. Mortenson. Mathematics for Computer Graphics Applications. Industrial Press. 1999 |
Požadavky:
A standard course in Linear AlgebraKlíčová slova:
Computer vision and graphics, Euclidean, affine, projective geometry, perspective camera, random numbers, randomized algorithms, Monte Carlo simulation, linear programming.Předmět je zahrnut do těchto studijních plánů:
Plán | Obor | Role | Dop. semestr |
MEOI5_2018 | Computer Vision and Image Processing | PO | 2 |
MEOI3_2018 | Computer Graphics | PO | 2 |
Stránka vytvořena 6.12.2024 17:50:34, semestry: Z/2025-6, Z,L/2024-5, připomínky k informační náplni zasílejte správci studijních plánů | Návrh a realizace: I. Halaška (K336), J. Novák (K336) |