Popis předmětu - B0B01PAN

Přehled studia | Přehled oborů | Všechny skupiny předmětů | Všechny předměty | Seznam rolí | Vysvětlivky               Návod
B0B01PAN Pokročilá analýza
Role:PV Rozsah výuky:2P+2S
Katedra:13101 Jazyk výuky:CS
Garanti:Hamhalter J. Zakončení:Z,ZK
Přednášející:Hamhalter J., Sobotíková V. Kreditů:6
Cvičící:Hamhalter J., Sobotíková V. Semestr:L

Webová stránka:

https://math.fel.cvut.cz/en/people/sobotik/vyuka/b0b01pan

Anotace:

Předmět je úvodem do teorie míry a integrace a základů funkcionální analýzy. V první části je vyložena teorie Lebesgueova integrálu. Další partie jsou věnovány základním pojmům teorie Banachových a Hilbertových prostorů a jejich spojitosti s harmonickou analýzou. Poslední část se zabývá spektrální teorii operátorů a jejími aplikacemi v maticové analýze.

Osnovy přednášek:

1. Algebry a okruhy podmnožin. Měřitelné funkce. Míra na sigma-algebře.
2. Abstraktní Lebesgueův integrál a střední hodnota náhodné veličiny.
3. Lebesgueova míra v R^n (konstrukce z vnější míry). Lebesgueův integrál.
4. Konvergenční věty.
5. Součinová míra. Fubiniho věta.
6. Integrace v R^n - věta o substituci.
7. Normovaný prostor. Úplnost. Omezené operátory na normovaném prostoru.
8. Prostor se skalárním součinem. Hilbertův prostor. Projekční věta.
9. Prostor L^2(R) jako Hilbertův prostor. Hustota diferencovatelných funkcí s kompaktním nosičem. Fourierova transformace v L^2(R). Plancherelova věta.
10. Spektra operátorů na Hilbertově prostoru. Základní třídy operátorů na Hilbertově prostoru: samoadjungovaný, pozitivní, unitární operátor, projekce.
11. Diagonalizace normálního operátoru a matice.
12. Rozklady matic a operátorů - spektrální, polární, SVD.
13. Funkce operátoru a matice.
14. Rezerva.

Osnovy cvičení:

1. Algebry a okruhy podmnožin. Měřitelné funkce. Míra na sigma-algebře.
2. Abstraktní Lebesgueův integrál a střední hodnota náhodné veličiny.
3. Lebesgueova míra v R^n (konstrukce z vnější míry). Lebesgueův integrál.
4. Konvergenční věty.
5. Součinová míra. Fubiniho věta.
6. Integrace v R^n - věta o substituci.
7. Normovaný prostor. Úplnost. Omezené operátory na normovaném prostoru.
8. Prostor se skalárním součinem. Hilbertův prostor. Projekční věta.
9. Prostor L^2(R) jako Hilbertův prostor. Hustota diferencovatelných funkcí s kompaktním nosičem. Fourierova transformace v L^2(R). Plancherelova věta.
10. Spektra operátorů na Hilbertově prostoru. Základní třídy operátorů na Hilbertově prostoru: samoadjungovaný, pozitivní, unitární operátor, projekce.
11. Diagonalizace normálního operátoru a matice.
12. Rozklady matic a operátorů - spektrální, polární, SVD.
13. Funkce operátoru a matice.
14. Rezerva.

Literatura:

[1] Rudin, W.: Analýza v reálném a komplexním oboru, Academia, 1977
[2] Kreyszig, E.: Introductory functional analysis with applications, Wiley 1989
[3] Lukeš, L.: Jemný úvod do funkcionální analýzy, Karolinum, 2005
[4] Meyer, C.D.: Matrix analysis and applied linear algebra, SIAM 2001.

Požadavky:

Předmět je zakončen standardně zápočtem a zkouškou. Podmínkou pro získání zápočtu je aktivní účast na výuce. Hodnocení předmětu bude záviset na zkoušce samotné. Zkouška je ústní a je při ní zkoušena probraná látka. Další informace viz https://math.fel.cvut.cz/en/people/sobotik/vyuka/b0b01pan

Poznámka:

Předmět bude vyučován pouze v prezenční formě bez anglické verze.

Předmět je zahrnut do těchto studijních plánů:

Plán Obor Role Dop. semestr
BPKYR_2021 Před zařazením do oboru PV 4,6


Stránka vytvořena 31.10.2024 17:51:58, semestry: Z,L/2024-5, L/2023-4, Z/2025-6, připomínky k informační náplni zasílejte správci studijních plánů Návrh a realizace: I. Halaška (K336), J. Novák (K336)