Subject description - XP34SRS

Summary of Study | Summary of Branches | All Subject Groups | All Subjects | List of Roles | Explanatory Notes               Instructions
XP34SRS Semiconductor Radiation Sources
Roles:S Extent of teaching:2P+2C
Department:13134 Language of teaching:CS
Guarantors:Jeřábek V. Completion:ZK
Lecturers:Burian Z., Jeřábek V. Credits:4
Tutors:Jeřábek V. Semester:L,Z

Anotation:

Stimulated emission in semiconductors. Homogeneous and heterogeneous junction, double heterostructure lasers and LEDs. Non-coherent LED's, super-luminescence diodes. Electromagnetic fields in semiconductor lasers. Types of lasers and their properties. Waveguide lasers, DFB and BFR structures. SQW and MQW lasers, quantum wells. Tunable injection lasers. Spectral line width and line stability. Radiating characteristic, coupling of the radiation source to a waveguide. Bi-stable and memory elements and switches. Semiconductor injection, waveguide amplifiers and wave convertors. Lasers and non-coherent diodes for optical communications. Measurement methods, applications.

Course outlines:

1. Stimulated emission in semiconductors
2. Homogeneous and heterogeneous junction, double heterostructure laser
3. Waveguide resonators, DFB and BFR structures
4. SQW and MQW lasers, quantum wells
5. Electromagnetic fields in semiconductor lasers
6. Types of lasers and their properties
7. Tunable injection lasers
8. Spectral line width and line stability
9. Radiating characteristic, coupling the laser to a waveguide
10. Bi-stable and voltage devices, switches
11. Non-coherent LED's, super-luminescence diodes
12. Lasers and non-coherent diodes for optical communications
13. Injection laser amplifiers
1. Stimulated emission in semiconductors
2. Homogeneous and heterogeneous junction, double heterostructure laser
3. Waveguide resonators, DFB and BFR structures
4. SQW and MQW lasers, quantum wells
5. Electromagnetic fields in semiconductor lasers
6. Types of lasers and their properties
7. Tunable injection lasers
8. Spectral line width and line stability
9. Radiating characteristic, coupling the laser to a waveguide
10. Bi-stable and voltage devices, switches
11. Non-coherent LED's, super-luminescence diodes
12. Lasers and non-coherent diodes for optical communications
13. Injection laser amplifiers
14. Measurement methods, applications

Exercises outline:

1. Measurement of the laser diodes and LEDs CW characteristics - optical power dependence on the electrical current.
2. Measurement of the temperature dependence of the laser diode threshold current
3. Measurement of the time and frequency response of the laser diodes and LEDs.
4. Measurement of the spectral properties of the laser diodes an LEDs.
5. Transmission and frequency response of the laser diode transmitter measurement.
6. Measurement of the fiber optical laser power in dependence to the pumping power.
7. Measurement of the fiber optical amplifier gain in dependence to the pumping power, credit.

Literature:

1. B.E.A. Saleh, M.C Teich: Fundamentals of Photonics , J.Wiley and Sons, Inc., New York, 1991
2. R.G. Hunsperger: Integrated Optics: Theory and Technology, Springer-Verlag, 2002
3. D.Wood: Optoelectronic Semiconductor Device, Prentice Hall, N.Y., London, 1994
4. Ch.L. Chen: Elements of Optoelectronics&Fiber Optics, IRWIN, 1996
5. E. Seckinger: Broadband Circuits for Optical Fiber Communication, JohnWiley&Sons Ltd., New Jersey, 2005
6. G. P. Agrawal: Lightwave Technology, JohnWiley&Sons Ltd., New Jersey, 2005
On the recommendation of the lecturer

Requirements:

c

Subject is included into these academic programs:

Program Branch Role Recommended semester
DOKP Common courses S
DOKK Common courses S


Page updated 16.6.2024 17:52:04, semester: Z,L/2023-4, Z/2024-5, Send comments about the content to the Administrators of the Academic Programs Proposal and Realization: I. Halaška (K336), J. Novák (K336)