Subject description - B0B01KANA

Summary of Study | Summary of Branches | All Subject Groups | All Subjects | List of Roles | Explanatory Notes               Instructions
B0B01KANA Complex Analysis
Roles:P Extent of teaching:2P+2S
Department:13101 Language of teaching:CS
Guarantors:Mihula Z. Completion:Z,ZK
Lecturers:Mihula Z. Credits:4
Tutors:Drážný L., Mihula Z., Turčinová H. Semester:Z

Web page:

https://moodle.fel.cvut.cz/courses/B0B01KANA

Anotation:

The course is an introduction to the fundamentals of complex analysis and its applications. The basic principles of Fourier, Laplace, and Z-transform are explained, including their applications, particularly to solving differential and difference equations.

Course outlines:

1. Complex numbers. Limits and derivatives of complex functions.
2. Cauchy-Riemann conditions, holomorphic functions. Harmonic functions.
3. Elementary complex functions. Line integral.
4. Cauchy's theorem and Cauchy's integral formula.
5. Power series representation of holomorphic functions.
6. Laurent series. Isolated singularities.
7. Residues. Residue theorem.
8. Fourier series and basic properties of Fourier transform.
9. Inverse Fourier transform. Applications of Fourier transform.
10. Basic properties of Laplace transform.
11. Inverse Laplace transform. Applications of Laplace transform.
12. Basic properties of Z-transform.
13. Inverse Z-transform. Applications of Z-transform.
14. Spare lecture

Exercises outline:

1. Complex numbers. Limits and derivatives of complex functions.
2. Cauchy-Riemann conditions, holomorphic functions. Harmonic functions.
3. Elementary complex functions. Line integral.
4. Cauchy's theorem and Cauchy's integral formula.
5. Power series representation of holomorphic functions.
6. Laurent series. Isolated singularities.
7. Residues. Residue theorem.
8. Fourier series and basic properties of Fourier transform.
9. Inverse Fourier transform. Applications of Fourier transform.
10. Basic properties of Laplace transform.
11. Inverse Laplace transform. Applications of Laplace transform.
12. Basic properties of Z-transform.
13. Inverse Z-transform. Applications of Z-transform.
14. Spare tutorial

Literature:

[1] H. A. Priestley: Introduction to Complex Analysis, Oxford University Press, Oxford, 2003.
[2] E. Kreyszig: Advanced Engineering Mathematics, Wiley, Hoboken, 2011.
[3] L. Debnath, D. Bhatta: Integral Transforms and Their Applications, CRC Press, Boca Raton, 2015.

Requirements:

Subject is included into these academic programs:

Program Branch Role Recommended semester
BPEK_2018 Common courses P 3
BPEEM2_2018 Electrical Engineering and Management P 3
BPEEM1_2018 Applied Electrical Engineering P 3
BPEEM_BO_2018 Common courses P 3


Page updated 9.7.2025 17:53:42, semester: Z/2025-6, Z/2026-7, L/2025-6, L/2026-7, L/2024-5, Send comments about the content to the Administrators of the Academic Programs Proposal and Realization: I. Halaška (K336), J. Novák (K336)