Subject description - B3M35ORR

Summary of Study | Summary of Branches | All Subject Groups | All Subjects | List of Roles | Explanatory Notes               Instructions
B3M35ORR Optimal and robust control
Roles:PO, PV Extent of teaching:2P+2C
Department:13135 Language of teaching:CS
Guarantors:Hurák Z. Completion:Z,ZK
Lecturers:Hurák Z. Credits:6
Tutors:Gurtner M., Hurák Z. Semester:L

Web page:

https://moodle.fel.cvut.cz/courses/RM35ORR

Anotation:

Tento pokročilý kurz je zaměřen na výpočetní metody návrhu optimálního a robustního řízení. Cílem je porozumění principům i omezením těchto metod a získání praktických výpočetních dovedností pro řešení realisticky složitých aplikačních problémů.

Study targets:

Navrhovat pokročilé zpětnovazební regulátory pro realisticky složité systémy, a to s využitím specializovaného software.

Content:

Jednotícím konceptem pro metody představené v tomto předmětu je minimalizace nějakého kritéria. Výsledný regulátor má různé vlastnosti v závislosti na tom, jaké kritérium je minimalizováno, ale i jak bylo minimalizováno. Přímá numerická minimalizace oblíbeného kvadratické kritéria přes sekvence akčního zásahu vede na v průmyslu rozšířené prediktivní řízení založené na modelu (angl. model predictive control, MPC). Jakkoliv atraktivní pro svou schopnost vzít v úvahu omezení na akční zásah, MPC řízení je implementačně netriviální protože jádrem takového regulátoru je numerický řešič optimalizační úlohy (typicky kvadratického programu). Jednodušší typ regulátoru lze v případě lineárního systému získat při uvolnění omezení na akční zásah (a místo toho penalizací řízení v optimalizačním kritériu) – výsledný LQ-optimální stavový zpětnovazební regulátor (LQR) je současně jedním z klíčových výsledků moderní teorie řízení i velmi užitečným praktickým nástrojem, a to zejména v kombinaci s Kalmanovým filtrem (v případě nedostupnosti měření všech stavů) – oblíbené LQG řízení. Užitečné jsou tyto metody LQR/LQG původně vyvinuté pro lineární systémy i v případě systémů nelineárních – pomocí LQR/LQG regulátoru lze stabilizovat systém v okolí numerickou optimalizací nalezené optimální trajektorie pro nelineární systém vystavený nejrůznějším omezení. Moderní pojetí optimálního řízení zavádí koncept normy systému; minimalizace H2 normy systému pak vede na klasické LQR/LQG řízení, avšak nabízí nová rozšíření. Oproti tomu minimalizace H∞ normy směřuje k zabezpečení robustnosti, tedy necitlivosti řízení na nepřesnosti či chyby v modelu systému. Minimalizace strukturovaného singulárního čísla μ pak představuje rozšíření H∞ metodologie pro systémy se strukturovanou (vícenásobnou) neurčitostí. Robustní řízení je tak možno vidět coby jednu z aplikací optimálního řízení.

Course outlines:

1. Úvod do numerické optimalizace – analýza: nutné a postačující podmínky optimality pro úlohy bez omezení i s omezením typu rovnost či nerovnost (Lagrange, KKT).
2. Úvod do numerické optimalizace – algoritmy: gradientní metody, Newtonova metoda, kvazi-Newtonovy metody, projektované gradientní metody a přehled dalších.
3. Optimální řízení v diskrétním čase – přímý přístup: prediktivní řízení založené na modelu (angl. model predictive control, MPC).
4. Optimální řízení v diskrétním čase – nepřímý přístup: LQ-optimální řízení (LQR) na konečném i nekonečném časovém horizontu (diferenční a algebraická Riccatiho rovnice), regulace i sledování reference.
5. Dynamické programování v diskrétním i spojitém čase: Bellmanův princip optimality, Hamiltonova-Jacobiho-Bellmanova rovnice, numerický algoritmus i odvození LQR. Stručný úvod do řízení na bázi posilovaného učení (angl. reinforcement learning).
6. Optimální řízení ve spojitém čase – nepřímý přístup: variační počet, LQ-optimální řízení na konečném i nekonečném časovém horizontu (diferenciální i algebraická Riccatiho rovnice), regulace i sledování reference.
7. Optimální řízení ve spojitém čase při volném koncovém čase a omezení na akční zásah: Pontrjagynův princip maxima, časově optimální řízení (bang-bang řízení pro dvojitý integrátor).
8. Optimální řízení ve spojitém čase – numerické metody optimálního řízení (angl. numerical optimal control) pro přímý i nepřímý přístup (metoda střelby, vícenásobné střelby i kolokační metody).
9. Některá rozšíření LQR-optimálního řízení: LQG, LTR (Loop Transfer Recovery) a H2-optimální řízení.
10. Modely neurčitosti a analýza robustnosti (stability i kvality řízení).
11. Klasické i moderní metody pro návrh robustního řízení ve frekvenční oblasti: minimalizace normy H∞ smíšené citlivostní funkce, obecný H∞ problém, robustní tvarování frekvenční charakteristiky H∞ optimalizací, μ-syntéza pro systémy se strukturovanou neurčitostí.
12. Analýza dosažitelné kvality řízení.
13. Redukce řádu modelu i regulátoru.
14. Lineární maticové nerovnosti a semidefinitní programování coby nástroje pro analýzu i syntézu optimálního a robustního řízení.

Exercises outline:

Část cvičení (zejména na začátku předmětu) bude realizována jako výpočetní, kdy studenti budou samostatně pracovat na zadaných větších projektech s možností konzultací s přítomným vyučujícím. Větší část cvičení ale bude věnována samostatné práci studentů na laboratorních úlohách.

Literature:

Povinná • Sigurd Skogestad a Ian Postlethwaite. Multivariable Feedback Control – Analysis and Design. 2.vydání, Wiley, 2005. V počtu cca 15 kusů dostupná v knihovně a rezervována pro studenty předmětu. • Pro témata neobsažená v knize vytvořil přednášející vlastní poznámky (anglicky psané lecture notes), které jsou studentům k dispozici na stránce předmětu ve fakultním systému Moodle. Kromě vlastních poznámek vyučujícího budou studenti odkazováni na partikulární zdroje pro dílčí témata (články v časopisech, online texty jiných vyučujících, …), viz dnešní stránka předmětu. Velká část témat (přednášek) je navíc zpracována ve formě videi, které jsou studentům k dispozici na Youtube (kanál AA4CC, playlist Optimal and robust control). Doporučená • Kirk, Donald E. 2004. Optimal Control Theory: An Introduction. Dover Publications. Kniha je přístupná online přes univerzitní knihovnu. Zároveň je poměrně finančně dostupná i v tištěné formě. Velmi doporučení hodná klasika. • Gros, Sébastien, a Moritz Diehl. 2020. Numerical Optimal Control. Draft. KU Leuven. Zdarma dostupné online na https://www.syscop.de/teaching/ss2017/numerical-optimal-control. • Rawlings, James B., David Q. Mayne, a Moritz M. Diehl. 2017. Model Predictive Control: Theory, Computation, and Design. 2. vyd. Madison, Wisconsin: Nob Hill Publishing, LLC. http://www.nobhillpublishing.com/mpc-paperback/index-mpc.html. Na stránce vydavatele i zdarma ke stažení. • Anderson, Brian D. O., a John B. Moore. 2007. Optimal Control: Linear Quadratic Methods. Dover Publications. V počtu cca 10 ks k dispozici v knihovně. • Borrelli, Francesco, Alberto Bemporad, a Manfred Morari. 2017. Predictive Control for Linear and Hybrid Systems. Cambridge, New York: Cambridge University Press. Autoři dali volně ke stažení na http://cse.lab.imtlucca.it/~bemporad/publications/papers/BBMbook.pdf.

Requirements:

Předpokladem pro úspěšné absolvování tohoto kurzu jsou znalosti základů řídicích systémů (frekvenční charakteristiky, zpětná vazba, stabilita, PID regulace, ...) a solidní znalosti lineární algebry (vlastní čísla matice, singulární rozklad matice, podmíněnost matice, ...). Výhodou je absolvování pokročilejšího předmětu o lineárních systémech zavádějícího pojmy jako řiditelnost, pozorovatelnost, minimální realizace. V rámci programu Kybernetika a robotika na FEL ČVUT jsou tyto znalosti nabídnuty v bakalářském předmětu Automatické řízení a magisterském předmětu Lineární systémy.

Keywords:

Optimalita, robustnost, optimalizace, automatické řízení, optimální řízení, dynamické programování, variační počet, diferenciální počet, lineární maticové nerovnosti, redukce řádu modelu.

Subject is included into these academic programs:

Program Branch Role Recommended semester
MPKYR3_2016 Systems and Control PO 2
MPKYR_2021 Common courses PV 2
MPEK8_2021 Communication and information processing PV 2,4
MPKYR1_2016 Robotics PV 3
MPKYR5_2016 Cybernetics and Robotics PV 2
MPKYR4_2016 Aerospace Systems PV 3
MPKYR2_2016 Sensors and Instrumentation PV 3


Page updated 19.9.2024 17:51:38, semester: L/2023-4, Z,L/2024-5, Z/2025-6, Z/2023-4, Send comments about the content to the Administrators of the Academic Programs Proposal and Realization: I. Halaška (K336), J. Novák (K336)