Subject description - B1M14TVM
Summary of Study |
Summary of Branches |
All Subject Groups |
All Subjects |
List of Roles |
Explanatory Notes
Instructions
on the feeding network
battery chargers, superconductive magnetic energy reservoir, induction heating
permissible operation area
transistor voltage source inverter
coordinate systems and used mathematical models
width modulation of voltage type
overvoltage
B1M14TVM | Theory and Application of Power Converters | ||
---|---|---|---|
Roles: | PZ | Extent of teaching: | 2P+2L |
Department: | 13114 | Language of teaching: | CS |
Guarantors: | Lettl J. | Completion: | Z,ZK |
Lecturers: | Lettl J. | Credits: | 5 |
Tutors: | Bauer J., Kučera J., Lipčák O., Skarolek P. | Semester: | L |
Anotation:
The course focuses on typical applications of power semiconductor converters on their sizing, switching and protection of power semiconductor converters. It also summarizes the basics of modulation and control strategies of power semiconductor converters and modern trends in their application in electric drives and other applications.Course outlines:
1. | Rectifiers with active load, discontinuous and continuous current mode | |
2. | Three-phase bridge rectifier working at multiple commutation | |
3. | Three-phase AC/AC converters, diagram of work at resistive load and at inductive load, backward influence |
4. | Utilization of power semiconductor converters in non-drive applications, electrostatic separators, welding rectifiers, |
5. | Reactive power compensation, contactless switches for phase control and cycled control, softstarters | |
6. | Resistor pulse control, cathodic and other types of prevention against electrochemical corrosion | |
7. | Power transistor in switching mode, switch on and switch off processes, influence of the load type, limit values, |
8. | Loss and lossless snubbers for switching off and snubber for switching on, realisation of the three-phase bridge |
9. | Modern controlled drive, its components, function structure, control principles, pulse width modulation methods | |
10. | Principle of vector control, basic structures, transformation of asynchronous machine equations to various |
11. | Principle of direct torque control, basic structures | |
12. | Principle of pulse width modulated rectifiers, rectifiers with pulse width modulation of current type and with pulse |
13. | Control and design principles of matrix converters | |
14. | Power semiconductor converter protection against current overload and against external and commutation |
Exercises outline:
1. | Instructions to the labs, security directions, laboratory rules, laboratory identification, work with oscilloscope | |
2. | One-phase controlled bridge rectifier with serial R+L load and parallel R+C load | |
3. | Control of one-phase controlled bridge rectifier with variable resistive load to the constant current | |
4. | Influence of the input leakage inductance on the commutation time of the three-phase bridge rectifier | |
5. | Serial resonance bridge inverter | |
6. | Parallel resonance bridge inverter | |
7. | Compensation circuit with rectifier | |
8. | Compensation circuit with AC/AC converter | |
9. | Load current control by the AC/AC converter in transformer secondary circuit at resistive load | |
10. | Load current control by the AC/AC converter in transformer secondary circuit at inductive load | |
12. | Control of the system with indirect frequency converter including pulse width modulated voltage source inverter | |
11. | Control of the system with pulse width modulated rectifier | |
13. | Load current control by the AC/AC converter in transformer primary circuit at resistive load | |
14. | Assesment |
Literature:
1. | Ned Mohan, William P. Robbins, Tore M. Undeland: WIE Power Electronics: Converters, Applications and Design, Media Enhanced , 3rd Edition, John Wiley & Sons, Inc., New York, March 2003 | |
2. | Bimal K. Bose:Power Electronics and Variable Frequency Drives : Technology and Applications John Wiley & Sons, Inc. -IEEE Press, New York, September 1996 | |
3. | PRESSMAN, Abraham I., Keith H. BILLINGS a Taylor MOREY. Switching power supply design. 3rd ed. New York: McGraw - Hill, 2009. ISBN 978-0-07-148272-1. |
Requirements:
Presence at all laboratory tasks, elaboration of laboratory reports. Subject is included into these academic programs:Program | Branch | Role | Recommended semester |
MPEEM1_2018 | Electrical Drives | PZ | 2 |
MPEEM3_2018 | Technological Systems | PZ | 2 |
MPEEM2_2018 | Electrical Power Engineering | PZ | 2 |
Page updated 6.12.2024 17:51:05, semester: Z/2025-6, Z,L/2024-5, Send comments about the content to the Administrators of the Academic Programs | Proposal and Realization: I. Halaška (K336), J. Novák (K336) |