Subject description - B1M14TVM

Summary of Study | Summary of Branches | All Subject Groups | All Subjects | List of Roles | Explanatory Notes               Instructions
B1M14TVM Theory and Application of Power Converters
Roles:PZ Extent of teaching:2P+2L
Department:13114 Language of teaching:CS
Guarantors:Lettl J. Completion:Z,ZK
Lecturers:Lettl J. Credits:5
Tutors:Bauer J., Kučera J., Lipčák O., Skarolek P. Semester:L

Anotation:

The course focuses on typical applications of power semiconductor converters on their sizing, switching and protection of power semiconductor converters. It also summarizes the basics of modulation and control strategies of power semiconductor converters and modern trends in their application in electric drives and other applications.

Course outlines:

1. Rectifiers with active load, discontinuous and continuous current mode
2. Three-phase bridge rectifier working at multiple commutation
3. Three-phase AC/AC converters, diagram of work at resistive load and at inductive load, backward influence
on the feeding network
4. Utilization of power semiconductor converters in non-drive applications, electrostatic separators, welding rectifiers,
battery chargers, superconductive magnetic energy reservoir, induction heating
5. Reactive power compensation, contactless switches for phase control and cycled control, softstarters
6. Resistor pulse control, cathodic and other types of prevention against electrochemical corrosion
7. Power transistor in switching mode, switch on and switch off processes, influence of the load type, limit values,
permissible operation area
8. Loss and lossless snubbers for switching off and snubber for switching on, realisation of the three-phase bridge
transistor voltage source inverter
9. Modern controlled drive, its components, function structure, control principles, pulse width modulation methods
10. Principle of vector control, basic structures, transformation of asynchronous machine equations to various
coordinate systems and used mathematical models
11. Principle of direct torque control, basic structures
12. Principle of pulse width modulated rectifiers, rectifiers with pulse width modulation of current type and with pulse
width modulation of voltage type
13. Control and design principles of matrix converters
14. Power semiconductor converter protection against current overload and against external and commutation
overvoltage

Exercises outline:

1. Instructions to the labs, security directions, laboratory rules, laboratory identification, work with oscilloscope
2. One-phase controlled bridge rectifier with serial R+L load and parallel R+C load
3. Control of one-phase controlled bridge rectifier with variable resistive load to the constant current
4. Influence of the input leakage inductance on the commutation time of the three-phase bridge rectifier
5. Serial resonance bridge inverter
6. Parallel resonance bridge inverter
7. Compensation circuit with rectifier
8. Compensation circuit with AC/AC converter
9. Load current control by the AC/AC converter in transformer secondary circuit at resistive load
10. Load current control by the AC/AC converter in transformer secondary circuit at inductive load
12. Control of the system with indirect frequency converter including pulse width modulated voltage source inverter
11. Control of the system with pulse width modulated rectifier
13. Load current control by the AC/AC converter in transformer primary circuit at resistive load
14. Assesment

Literature:

1. Ned Mohan, William P. Robbins, Tore M. Undeland: WIE Power Electronics: Converters, Applications and Design, Media Enhanced , 3rd Edition, John Wiley & Sons, Inc., New York, March 2003
2. Bimal K. Bose:Power Electronics and Variable Frequency Drives : Technology and Applications John Wiley & Sons, Inc. -IEEE Press, New York, September 1996
3. PRESSMAN, Abraham I., Keith H. BILLINGS a Taylor MOREY. Switching power supply design. 3rd ed. New York: McGraw - Hill, 2009. ISBN 978-0-07-148272-1.

Requirements:

Presence at all laboratory tasks, elaboration of laboratory reports.

Subject is included into these academic programs:

Program Branch Role Recommended semester
MPEEM1_2018 Electrical Drives PZ 2
MPEEM3_2018 Technological Systems PZ 2
MPEEM2_2018 Electrical Power Engineering PZ 2


Page updated 6.12.2024 17:51:05, semester: Z/2025-6, Z,L/2024-5, Send comments about the content to the Administrators of the Academic Programs Proposal and Realization: I. Halaška (K336), J. Novák (K336)