# Subject description - BE2B17OKS

Summary of Study | Summary of Branches | All Subject Groups | All Subjects | List of Roles | Explanatory Notes               Instructions
BE2B17OKS Optical Communication Systems
Roles:  Extent of teaching:2P+2C
Department:13117 Language of teaching:EN
Guarantors:Zvánovec S. Completion:Z,ZK
Lecturers:Komanec M., Zvánovec S. Credits:4
Tutors:Guerra Yanez C., Šístek J. Semester:Z

Web page:

https://moodle.fel.cvut.cz/courses/BE2B17OKS

Anotation:

The aim of the course is to introduce students with principles of optical systems. The course covers both theoretical background of optics and practical approaches for the design of optical systems. Students extend their knowledge from the ray optics through the matrix optics, subsequently and further by the description of optical systems using Gaussian beams, towards wave and quantum optics. Then students will learn the basic mechanisms and principles of fiber optics.

Course outlines:

 1 The basic elements of optical communications systems, introduction to optics 2 Beam propagation in inhomogeneous medium, geometrical optics 3 Matrix optics, transfer matrices of optical elements 4 Basics of wave optics 5 Gaussian beams, transition through optical components 6 Fourier optics 7 Quantum Optics 8 The basic technology of optical waveguides 9 Fiber Optics 10 Propagation of the pulses in dispersive media 11 Nonlinear fiber optics 12 Solitons and noise in optical systems 13 Direct and coherent detection 14 Special optical fibers, optical sensors, sensor systems

Exercises outline:

 1 Recapitulation of knowledge from elmag. theory 2 Geometrical optics 3 Matrix Optics 4 Gaussian beams 5 The first series of measurements: Measurement of refractive index of air 6 The first series of measurements: Measurement of Gaussian beam parameters 7 The first series of measurements: Measurement of the rotation based on Doppler effect 8 Solution of waveguides based on geometrical optics methods 9 Examples of solution of inhomogeneous waveguides - a method of effective refractive index 10 Calculation of basic parameters of (SI and GRIN) optical fibers 11 The second series of measurements: Measuring with optical reflectometer 12 The second series of measurements: Rise time of optical link 13 The second series of measurements: Measurement of numerical aperture 14 Check of reports

Literature:

 [1] Saleh B. E. A.,Teich, M. C., Fundamentals of photonics, 2nd ed. Hoboken, N.J.: Wiley Interscience, 2007. [2] Agrawal G. P.: Fiber-Optic Communications Systems, Third Edition., John Wiley & Sons, 2002.

Requirements:

An active attendance of tutorials together with 3 elaborated semester projects and successful completion of the final test have to be fulfilled to reach an ungraded assessment.

Subject is included into these academic programs:

 Program Branch Role Recommended semester

 Page updated 10.8.2024 17:53:04, semester: Z,L/2024-5, Z,L/2023-4, Send comments about the content to the Administrators of the Academic Programs Proposal and Realization: I. Halaška (K336), J. Novák (K336)