13136 / 13141 - Grants - 2021
13136 / 13141 - Artificial Intelligence Center
Projects Supported by Grants 2021
- Bošanský, B.: Flexible and Resilient Autonomus Systems
- 2018 - 2023, 17RT0176
- Bošanský, B.: Computing Equilibrium Strategies in Dynamic Games
- 2019 - 2021, GJ19-24384Y
- Faigl, J.: Multi-Robot Persistent Monitoring of Dynamic Environments
- 2019 - 2021, GA19-20238S
- Faigl, J.: Towards Optimal Curvature-Constrained Tours in Robotic Applications
- 2019 - 2022, LTAIZ19013
- Faigl, J.: Learning Complex Motion Planning Policies
- 2021 - 2023, GC21-33041J
- García, S.: An Improved IDS for IoT Threats Detection using Federated AI Learning and P2P cooperation
- 2020 - 2021, 666R1/2020
- Krajník, T.: Towards long-term autonomy through introduction of the temporal domain into spatial representations used in robotics
- 2020 - 2021, GC20-27034J
- Krajník, T.: Systém pro sociální zdrženlivost založený na prediktivních prostoročasových modelech
- 2020 - 2021, IDENT189
- Krajník, T.: RoboRoyale: ROBOtic Replicants for Optimizing the Yield by Augmenting Living Ecosystems
- 2021 - 2026, 964492
- Král, L.: The Signal and the Noise in the Era of Journalism 5.0 - A Comparative Perspective of Journalistic Genres of Automated Content
- 2021 - 2023, TL05000057
- Král, L.: Artificial intelligence and human rights: risks, opportunities and regulation
- 2021 - 2023, TL05000484
- Král, L.: Central European Digital Media Observatory
- 2021 - 2024,
- Kroupa, T.: Game Theory for Adversarial Machine Learning
- 2020 - 2021, W911NF2010197
- Kroupa, T.: Network modelling of complex systems: from correlation graphs to information hypergraphs
- 2021 - 2024, GA21-17211S
- Pačes, P.: System for Situational Awareness Improvement and UAS Operation Management
- 2019 - 2021, TF06000082
- Pevný, T.: Using deep reinforcement learning to simulate security analyst
- 2018 - 2021, FA9550-18-1-7008
- Pevný, T.: Game Over Eva(sion): Securing Deep Learning with Game Theory
- 2019 - 2021, GF19-29680L
- Pevný, T.: Development of an efficient steganalysis framework for uncovering hidden data in digital media
- 2021 - 2024, 101021687
- Rigaki, M.: FEEL: FEderatEd Learning for network security
- 2021 - 2022, 682R1/2021
- Šmídl, V.: Transferability of AI-based fraud-detection models to support expansion on foreign markets
- 2020 - 2022, FW02020147
The page was created 30.03.2025 05:00:01