Subject description - B3M38VBM1

Summary of Study | Summary of Branches | All Subject Groups | All Subjects | List of Roles | Explanatory Notes               Instructions
B3M38VBM1 Videometry and Contactless Measurement
Roles:PV Extent of teaching:2P+2L
Department:13138 Language of teaching:CS
Guarantors:Šmíd R. Completion:Z,ZK
Lecturers:Šmíd R. Credits:6
Tutors:Šmíd R. Semester:Z

Web page:

https://moodle.fel.cvut.cz/courses/B3M38VBM

Anotation:

This course focuses on CCD and CMOS video sensors, and optoelectronic sensors in general and their use in contactless videometric measurement systems. Further optical radiation, its features, behavior and its use for acquiring object parameters, optical projection system, design of measurement cameras and processing of their signal will be presented. Students will design, realize and debug an independent project - 'Optoelectronic reflective sensor', during labs.

Study targets:

Teach: Basics - optoelectronic sensors and optical projection system

Content:

This course focuses on CCD and CMOS video sensors, and optoelectronic sensors in general and their use in contactless videometric measurement systems. Further optical radiation, its features, behavior and its use for acquiring object parameters, optical projection system, design of measurement cameras and processing of their signal will be presented. Students will design, realize and debug an independent project - 'Optoelectronic reflective sensor', during labs.

Course outlines:

1. Introduction to videometry and contactless measurement, optical radiation and its behavior
2. Semiconductor radiation detectors, photodiodes, semiconductor radiation sources, LED, LASER
3. Optoelectronic position sensors, triangulation sensors, laser scanning sensors, laser rangefinders
4. Sensors for infrared radiation, ultrasound sensors for measurement and robotics
5. MOS capacitor as an optical radiation detector, CCD shift register, CCD line sensors
6. CCD area sensors, arrangement, principle of operation (Full Frame, Frame Transfer, Interline Transfer)
7. CCD sensors, features and limitation, CCD cameras and their function
8. CMOS image sensor, construction, arrangement, features and its control
9. Microwave radar sensors, position measurement
10. Optical projection systems and their design, resolution limitation
11. Videosignal standards, videosignal digitalization and computer interfacing, digital camera interfaces
12. Optical radiation sources, lighting sources for measurement, structured light sources, scene lighting
13. Design of compact CMOS cameras with internal image processing for positional control
14. Design of automatic videometric inspection systems

Exercises outline:

In the first section of labs, students will acquaint themselves with basic optoelectronic sensors by measuring their parameters. Using this knowledge they will independently solve a project: Optoelectronic reflective sensor. This will include design of electronic circuits, selection of component parameters and simulation of the whole system. Then the students will realize and debug this project and measure its parameters. An important part of this will be creating documentation throughout the project. The complete project will be presented and defended in class. The final section of labs will deal with image sensor, cameras, optical projection systems and other sensors for contactless measurement.

Literature:

Durini, Daniel, ed. 2019. High Performance Silicon Imaging: Fundamentals and Applications of CMOS and CCD Sensors. 2. vyd. Woodhead Publishing. Předchozí vydání z roku 2014 dostupné jako e-kniha přes knihovnu. Sinha, P. K. 2012. Image Acquisition and Preprocessing for Machine Vision Systems. Bellingham, Wash: SPIE Press. Dostupná jako e-kniha přes knihovnu.

Requirements:

Knowledge of electronics, passing B3B31EPO "Electronic devices and circuits", or equivalent, BE5B31ZEO Fundamentals of Electrical Circuits

Keywords:

Photometric and radiometric units, Optoelectronic sensor, CCD sensor, CMOS image sensor, Lens, Optical projection system

Subject is included into these academic programs:

Program Branch Role Recommended semester
MPKYR_2021 Common courses PV 1


Page updated 24.7.2024 09:51:47, semester: Z/2024-5, Z,L/2023-4, L/2024-5, Send comments about the content to the Administrators of the Academic Programs Proposal and Realization: I. Halaška (K336), J. Novák (K336)