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Abstract

There is a growing number of applications of game theory in the real world, especially in eco-
nomical and security domains. There are two main challenges brought by these applications.
First challenge is created by the need of robust solutions, caused by the non-rational nature
of the human opponents encountered in these applications. Second challenge lies in the size
of the games which need to be solved. This thesis addresses both of these issues. It provides
�rst thorough experimental evaluation of existing advanced solution concepts on a set of
real world inspired games. The best solution concept is then applied to the Double oracle
algorithm, which is one of the most suitable algorithms for solving large domains found in
these applications. The aim of this action is to even further increase the performance of
this algorithm, by exploiting higher quality of solutions provided by the advanced solution
concept.

Abstrakt

Existuje stále rostoucí mnoºství aplikací teorie her ve scéná°ích ze skute£ného sv¥ta, hlavn¥
v bezpe£nostních a ekonomický doménách. Tyto aplikace p°iná²í dv¥ výzvy. První výzva je
tvo°ena pot°ebou robustn¥j²ích °e²ení, zp·sobenou neracionální povahou lidských protivník·
vyskytujících se v t¥chto aplikacích. Druhá výzva je tvo°ená velikostí her, které je pot°eba
°e²it. Tato práce pomáhá °e²it oba tyto problémy. Poskytuje první experimentální ohod-
nocení existujících pokro£ilých koncept· °e²ení na mnoºin¥ her, inspirovaných skute£ným
sv¥tem. Nejlep²í z t¥chto °e²ení je pak aplikováno do Double oracle algoritmu, coº je je-
den z nejvhodn¥j²ích algoritm· pro °e²ení rozsáhlých domén, se kterými se setkáváme v
t¥chto aplikacích. Cílem této akce je zvý²ení jeho výkonu, pomocí vyuºití kvalitn¥j²ích
°e²ení poskytnutých tímto konceptem.
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Chapter 1

Introduction

Game theory is a widely used approach for analysing multi-agent interaction using mathe-
matical models, with an aim to �nd a behavior optimizing rewards obtained by players. In
the recent years a growing number of real world applications of game theoretical approaches
emerged, including placement of security checkpoints around airports [13], scheduling of
Federal air marshals to commercial �ights [19], development of poker players on the level of
professional human players [15] or trading agents in auctions [24].

The main aim of game theory is to �nd the optimal behavior in various scenarios called
games. Such a behavior is called strategy and is prescribed by a solution concept. The most
famous and widely used solution concept is the Nash equilibrium [12], which is guaranteed to
prescribe the optimal behavior to every player in the game, under the assumption of rational
opponents. The main shortcoming of this solution concept is that it doesn't exploit mistakes
made. So for example if in the game of poker one player by accident creates an opportunity
for the second player to win 1000$ instead of the expected win of 1$ it is consistent with Nash
equilibrium to ignore this opportunity and proceed to win the expected 1$ prize. This is
caused by the fact that Nash equilibrium expects fully rational player and so it assumes that
such mistake will never happen. This is a serious issue since such mistakes are common in the
real world applications. This is caused by the fact that the opponents in these applications
are usually humans, which are known to behave irrationally in various scenarios.

There is a number of solution concepts called re�nements of the Nash equilibrium which
attempt to cope with these issues. These concepts still guarantee the optimality against
rational opponents and further improve the Nash equilibrium, exploiting various types of
mistakes of the opponents or even by the player himself. And so when one encounters an
unexpected situation, where there is a pro�t higher then expected achievable, these solution
concepts should prescribe behavior maximizing the pro�t. Unfortunately, the only compar-
ison of existing re�nements available, is performed on small, arti�cially created domains,
speci�cally tailored to show some desirable property. In the �rst part of this thesis we will
�ll this gap for a two player games with sequential interaction in fully competitive environ-
ment, with imperfect information caused by unobservable actions of opponents or stochastic
environment. These games are called two-player zero-sum extensive-form games with imper-
fect information. We provide experimental evaluation of chosen re�nements on real world
inspired two-player zero-sum extensive-form games, such as card games or border patrolling

1



2 CHAPTER 1. INTRODUCTION

scenarios. Their overall performance is discussed along with implementational complications,
such as numerical stability, which need to be overcome in order to compute them.

Furthermore thanks to the demand of scalability introduced by often large applications,
several algorithms speci�cally created to solve large extensive-form games emerged. These
algorithms allow further deployment of the game theoretical approaches to various, previ-
ously too complex, domains. For example, there is the Counterfactual regret minimization
algorithm [25] which was successful in solving poker games orders of magnitude larger than
the current state of the art. Another of such algorithms is the Double oracle algorithm [1]
which solves large games by iteratively building a smaller game, computing its Nash equi-
librium. This procedure is repeated until the solution of this smaller game equals to the
solution of the complete game. This approach o�ers a possibility to solve games faster, while
also saving the memory needed, since there is no need to construct the whole representation
of the original game.

The main topic of this thesis is the incorporation of the best suitable re�nement to the
Double oracle algorithm to further improve its performance, by computing more sensible
strategies in every iteration.

1.1 Thesis outline

Chapter 2 provides a brief introduction of the most used representations of games. Chapter
3 de�nes the Nash equilibrium and the most known re�nements. Chapter 4 contains a
discussion about the computational aspects of previously de�ned re�nements. Chapter 5
is based on �ermák et al. [26] and presents results of comparison of re�nements of Nash
equilibrium. Chapter 6 formally introduces the Double oracle algorithm. Chapter 7 presents
results of Double oracle algorithm using re�ned solver. Chapter 8 contains a conclusion of
the thesis.



Chapter 2

Introduction to Game Theory

This chapter presents the most known representations of the games. We provide the descrip-
tion and formal de�nitions of normal-form and extensive-form games. The main focus of
this thesis is on two-player zero-sum extensive-form games with imperfect information and
perfect recall, however number of concepts discussed in following chapters make use of the
normal-form representation and so this representation was not omitted. Furthermore every
extensive-form game can be converted to the normal-form representation, and so this repre-
sentation should be thoroughly analyzed. Even though it may appear that the limitations
used are too restrictive, they still permit a large number of purely competitive scenarios,
where the gain of one player equals to the loss of the other. In addition, they allow the pos-
sibility of unobservable moves of the opponent or the stochastic environment, dramatically
increasing the number of domains consistent with such representation. The restriction to
perfect recall means that every player remembers what he did in the past along with all the
informations he obtained during the play. Between games consistent with these restriction
belong classical games such as chess, two player poker or more realistic scenarios such as
security of industrial objects.

2.1 Normal-form Games

Normal-form games typically represent one-shot simultaneous moves games, using a matrix,
assigning utility value for every combination of actions of players. This representation doesn't
exploit any structure, such as sequential interaction between players, of the game played.
Instead it simply evaluates every pair of actions, under assumption that both players play
simultaneously. These facts make normal-form unsuitable for representation of larger games.

De�nition 1. Two player normal-form game is a tuple (P, A, u) where:

1. P is a set of 2 players indexed by i

2. A = A1 ×A2 where Ai is a �nite set of actions available to player i

3. u = (u1, u2) where ui : A → R is a utility function for player i

3



4 CHAPTER 2. INTRODUCTION TO GAME THEORY

C ′ D′

C -1, -1 -4, 0
D 0, -4 -3, -3

Table 2.1: Prisoner's Dilemma as a normal-form game

As an example of the normal-form game consider the game called Prisoner's Dilemma
depicted in Table 2.1. Prisoner's Dilemma describes a scenario where two prisoners sit under
interrogation in di�erent rooms. Both of them have the possibility to cooperate (with the
other prisoner) C or to defect D. Both players act simultaneously, which means that neither
of them knows what the other did when deciding. The utility matrix in Table 2.1 describes
the outcomes for every combination of all available actions.

Let us now discuss strategies of players. A strategy can be seen as a plan prescribing
behavior to a player. A set of pure strategies Si corresponds to the set of actions Ai. A set
of mixed strategies ∆i contains all the probability distributions δi over the set Si. A strategy
pro�le is a vector of strategies, one for each player.

2.2 Extensive-form Games

Extensive-form games provide a representation which is more suitable for description of sce-
narios which evolve in time. This representation allows every player to choose action in each
state of the game, using exponentially smaller representations in the form of a game tree
instead of the utility matrix. Nodes of this tree represent the states of the game and edges
actions available in the corresponding states. Leafs represent the terminal states and have
the utility value for all players associated with them, representing their preference of this
outcome. We distinguish two types of extensive-form games, perfect-information and imper-
fect information ones. In perfect-information games every player knows everything about
the state of the game, whilst in imperfect-information games some of these informations may
be hidden.

De�nition 2. A �nite extensive-form game with perfect information has the following com-

ponents:

1. A �nite set P of players

2. A �nite set H of sequences, the possible histories of actions, such that the empty se-

quence is in H and every pre�x of a sequence in H is also in H. Z ⊆ H are the terminal

histories (those which are not a pre�x of any other sequences). A(h) = {a : (h, a) ∈ H}
are the actions available after a nonterminal history h ∈ H.

3. A function P (h) that assigns to each nonterminal history (each member of H\Z) a

member of P ∪ {c}. P (h) is the player who takes an action after the history h. If

P (h) = c then chance determines the action taken after history h.
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4. A function fc that associates with every history h for which P (h) = c a probability

measure fc(.|h) on A(h) (fc(a|h) is the probability that a occurs given h), where each

such probability measure is independent of every other such measure.

5. For each player i ∈ P a utility function ui from terminal states Z to R. If P = {1, 2}
and u2 = −u1 it is a zero sum extensive-form game.

De�nition 3. A �nite extensive-form game with imperfect information is a tuple (P,H, P, fc, I, u),
with following components:

1. Perfect-information extensive-form game (P,H, P, fc, u)

2. For each player i ∈ P a partition Ii of {h ∈ H : P (h) = i} with the property that

A(h) = A(h′) whenever h and h' are in the same member of the partition. For Ii ∈ Ii
we denote by A(Ii) the set A(h) and by P (Ii) the player P (h) for any h ∈ Ii. Ii is the
information partition of player i; a set Ii ∈ Ii is an information set of player i

Informally, every information set Ii for player i contains all game states h which are
indistinguishable for i.

Figure 2.1: Prisoner's Dilemma as an extensive-form game

As an example consider the imperfect-information extensive-form game from Figure 2.1.
It is again the Prisoner's Dilemma, this time represented as an extensive-form game. Player
1 plays �rst and makes a choice in the root of the game tree. As we can see the states after
both choices are grouped into 1 information set, because they are indistinguishable for player
2. The leaf of the tree and therefore terminal state of the game is reached after the action
of player 2 and the outcome of the game is evaluated.

Next we provide the formal de�nition of perfect recall, which is one of the properties
required from the games used in this thesis.

De�nition 4. Player i has a perfect recall in an imperfect-information game G if for any two

nodes h, h′, that are in the same information set Ii, for any path h0, a0, h1, a1, h2, ..., hm, am, h
from the root of the game to h (where the hj are decision nodes and the aj are actions) and

for any path h0, a
′
0, h
′
1, a
′
1, h
′
2, ..., h

′
m′ , a

′
m′ , h

′ from the root to h′ it must be the case that:
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1. m = m′

2. for all 0 ≤ j ≤ m, if P (hj) = i (i.e., hj is a decision node of player i), then hj and h
′
j

are in the same equivalence class for i;

3. for all 0 ≤ j ≤ m, if P (hj) = i (i.e., hj is a decision node of player i), then aj = a′j.

Let us now discuss strategies in extensive-form games. A pure strategy for player i is
a mapping Ii → A(Ii). Si is a set of all pure strategies for player i. A mixed strategy δi
is again a probability distribution over elements of Si, with ∆i representing the set of all
mixed strategies for i. In the extensive form games, we can represent strategies as behavioral
strategies bi, which assign probability distribution over A(Ii),∀Ii ∈ Ii. For all games with
perfect recall, behavioral strategies have the same expressive power as mixed strategies [6].

Finally in the games of perfect recall, we can use sequence-form representation [4]. A
sequence σi is a list of actions of player i ordered by their occurrence on the path from the
root of the game tree to some node. These sequences are used to represent the strategy as a
realization plan ri. The realization plan ri assigns the probability to sequences σi of player
i, assuming other players play such that the actions of σi can by executed. Furthermore ri
satis�es the network �ow property, i.e. ri(σ) =

∑
a∈A(I) ri(σ · a), where I is an information

set reached by sequence σ and σ · a stands for σ extended by action a.

Thanks to the equality of strategy representations above, we overload the notation of
utility function to u(si, s−i) as the utility of the state reached when playing according to si
and s−i, u(δi, δ−i) as an expected utility, when playing according to δi and δ−i and similarly
u(bi, b−i) and u(ri, r−i). Furthermore let us denote Ui(si|∆) as the utility obtained when
i plays si and the rest of the players follows strategy pro�le ∆. Ui(I, a|B) is the utility
obtained by i in information set I, when playing action a in I and according to strategy
pro�le B otherwise.

This chapter provided description of the types of games and restrictions we will assume
through this thesis. The next chapter will use this background to describe various solution
concepts used for solving normal-form and extensive-form games.



Chapter 3

Nash Equilibrium and Re�nements

This chapter introduces optimal strategies for games described by solution concepts. The
most famous solution concept of Nash equilibrium is introduced and all its shortcomings
discussed. Next we describer the most known re�nements of the Nash equilibrium for both
normal-form and extensive-form games.

3.1 Nash equilibrium

Nash equilibrium is a solution concept due to Nash [12], which prescribes the optimal be-
havior under the assumption of opponents playing to maximize their outcome. Let us �rst
de�ne the notion of the best response.

De�nition 5. Strategy δ∗i is the best response to strategy δ−i i� u(δ∗i , δ−i) ≥ u(δi, δ−i), ∀δi ∈
∆i. We denote br(δi) as the set of all best responses to δi.

Informally the Nash equilibrium is such a strategy pro�le where no player wants to
deviate from its strategy, even when he learns the strategy of others. Note that there might
be an in�nite number of such strategy pro�les. A player doesn't want to deviate from his
strategy only when he plays according to the best response to strategies of all other players,
and so we arrive to the formal de�nition of Nash equilibrium.

De�nition 6. Strategy pro�le ∆ is a Nash equilibrium i� ∀δi ∈ ∆ : δi ∈ br(δ−i).

As an example lets consider the game from Table 3.1. There are two Nash equilibria
in the example, namely (α1, α2) and (β1, β2). Since br(α1) = {α2} and br(α2) = {α1},
(α1, α2) is indeed Nash equilibrium. Same goes for (β1, β2), since br(β1) = {α2, β2} and
br(β2) = {α1, β1}.

3.2 Re�nements in Normal-form Games

The need to re�ne Nash equilibrium strategies in normal-form games follows from the fact
that the Nash equilibrium doesn't exploit possible mistakes of the opponent. Let us consider
the game in Table 3.1. As shown above, this game has two Nash equilibria (α1, α2) and

7



8 CHAPTER 3. NASH EQUILIBRIUM AND REFINEMENTS

(β1, β2) since in both cases there is no gain for either of the players obtained by deviating
from given strategy pro�le. However, thanks to the structure of this particular game, neither
of them can actually lose anything by changing strategy from βi to αi. There is only one
equilibrium optimal when considering possible mistakes of the opponent (α1, α2). Solution
concepts introduced in this section will attempt to preserve only the rational equilibria.

α2 β2
α1 1, 1 0, 0
β1 0, 0 0, 0

Table 3.1: Normal-form game with a non-robust equilibrium

3.2.1 Undominated equilibrium

The main idea behind this equilibrium is, that if choosing between two actions, where one
of them is at least as good as the other no matter what the opponent does and better for at
least one action of the opponent, one should always prefer this action over the other. This
relation between actions is called weak dominance. Formally strategy s1i weakly dominates
s2i i� ∀s−i ∈ S−i : u(s1i , s−i) ≥ u(s2i , s−i) and ∃s−i ∈ S−i : u(s1i , s−i) > u(s2i , s−i). And so the
undominated equilibrium in normal-form games is such a Nash equilibrium which consists
only of those strategies, which are not weakly dominated by any other strategy.

The only undominated equilibrium of the game from Figure 3.1 is (α1, α2), because αi
dominates βi, ∀i ∈ P. In the game from Figure 3.2, which was created from the game in
Table 3.1 by adding actions γ1 and γ2, are two undominated equilibria, namely (α1, α2) and
(β1, β2), because the only dominated actions of this game are γ1 and γ2, and so the only
Nash equilibrium which is not undominated is (γ1, γ2).

3.2.2 Perfect equilibrium

Solution concept due to Selten et al. [16]. The basic idea behind this concept is, that it
is possible for every player to make mistakes with a small probability. And so every player
needs to consider all the outcomes of his actions, not only the ones expected when considering
rational opponent. Let us �rst de�ne ε-perfect equilibrium.

De�nition 7. An ε-perfect equilibrium is a fully mixed strategy pro�le ∆ = (δ1, ..., δn) such

that

Uj(sj |∆) < Uj(s
′
j |∆)⇒ δj(sj) ≤ ε, ∀j ∈ P,∀sj , s′j ∈ Sj (3.1)

A perfect equilibrium is then de�ned as the limit of ε-perfect equilibria. That is (δ1, ..., δn)
is a perfect equilibrium i� there exists sequence {ε}∞k=1 and (δk1 , ..., δ

k
n)∞k=1 such that each

εk > 0 and lim
k→∞

εk = 0, each (δk1 , ..., δ
k
n) is an εk-perfect equilibrium and lim

k→∞
δki (si) =

δi(si),∀i ∈ P,∀si ∈ Si.
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For any game in normal form, the perfect equilibria form a non-empty subset of Nash
equilibria [16]. Furthermore every perfect equilibrium is undominated and for two-player
zero-sum games every undominated equilibrium is perfect [22].

Let us now examine perfect equilibria of our motivational game from Table 3.1. Consider
following strategy pro�le.

δε1(α1) = ε, δε1(β1) = 1− ε (3.2)

δε2(α2) = ε, δε2(β2) = 1− ε (3.3)

Responses for this pro�le and player 1 are then evaluated.

U1(α1|δε1, δε2) = ε (3.4)

U1(β1|δε1, δε2) = 0 (3.5)

As we can see, the best response here is α1 and so this pro�le is not ε-perfect equilibrium.
From the fact that there is only one Nash equilibrium left and the set of perfect equilibria is
always non-empty follows that (α1, α2) is perfect equilibrium.

α2 β2 γ2
α1 1, 1 0, 0 -9, -9
β1 0, 0 0, 0 -7, -7
γ1 -9, -9 -7, -7 -7, -7

Table 3.2: Normal-form game with two perfect equilibria

Now let us examine the game represented in normal form in Table 3.2, which was created
from the game in Table 3.1 by adding actions γ1 and γ2. The outcome we would like to
achieve once again is (α1, α2), since both added actions are dominated. And indeed this
strategy pro�le is still Nash equilibrium. There are however two additional pure strategy
Nash equilibria, namely (β1, β2) and (γ1, γ2). Of these only (γ1, γ2) is not perfect. Let us
now show that (β1, β2) is perfect equilibrium. We choose following strategy pro�le.

δε1(α1) = ε, δε1(β1) = 1− 2ε, δε1(γ1) = ε (3.6)

δε2(α2) = ε, δε2(β2) = 1− 2ε, δε2(γ2) = ε (3.7)

Responses for this pro�le and player 1 are then evaluated as follows.

U1(α1|δε1, δε2) = −8ε (3.8)

U1(β1|δε1, δε2) = −7ε (3.9)

U1(γ1|δε1, δε2) = −7− 2ε (3.10)

So β1 is the best response to δε2 and as required in (3.1) δε1(α1) ≤ ε, δε1(γ1) ≤ ε. Then as ε
converges to zero (δε1, δ

ε
2) converge to the strategies which select β1 and β2 with probability

1, implying that (β1, β2) is indeed perfect equilibrium. This property is caused by adding
dominated strategies (γ1, γ2) to the game and was pointed out by Myerson et al. [11].
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α3 β3
α2 β2

α1 1, 1, 1 0, 0, 1
β1 0, 0, 1 0, 0, 1

α2 β2
α1 0, 0, 0 0, 0, 0
β1 0, 0, 0 1, 1, 0

Table 3.3: Proper equilibrium in�uenced by adding strictly dominated strategy

3.2.3 Proper equilibrium

Solution concept due to Myerson et al.[11], which is robust against small perturbations in
strategies. These perturbations have some additional properties added with an aim to resolve
the issues mentioned in previous section. They are considered to be rational, meaning that
the costly mistake is expected with an order of magnitude smaller probability than the cheap
one. Let us �rst de�ne ε-proper equilibria.

De�nition 8. ε-proper equilibrium is a fully mixed strategy pro�le ∆ = (δ1, ..., δn) such that

Uj(sj |∆) < Uj(s
′
j |∆)⇒ δj(sj) ≤ ε · δj(s′j), ∀j ∈ P,∀sj , s′j ∈ Sj (3.11)

This de�nition directly implies that every ε-proper equilibrium is ε-perfect since δj(sj) ≤
ε · δj(s′j)⇒ δj(sj) ≤ ε, ∀j ∈ P, ∀sj , s′j ∈ Sj but the opposite doesn't hold. Strategy pro�le
(δ1, ..., δn) is a proper equilibrium i� there exist some sequences {ε}∞k=1 and (δk1 , ..., δ

k
n)∞k=1

such that each εk > 0 and lim
k→∞

εk = 0, each (δk1 , ..., δ
k
n) is εk-proper equilibrium and

lim
k→∞

δki (si) = δi(si), ∀i ∈ P,∀si ∈ Si. For any game in normal form, the proper equilib-

ria form a non-empty subset of perfect equilibria [11]
Now let us return to the game from Table 3.2. Let us check that the strategy pro�le from

(3.6) and (3.7) is not ε-proper equilibrium. Since for 0 < ε < 1 holds that U1(γ1|δε1, δε2) <
U1(α1|δε1, δε2) but from δ1(γ1) > ε ·δ1(α1) follows that (β1, β2) is not ε-proper equilibrium. As
we can see insisting on properness removed the undesirable property of perfect equilibrium,
by expecting more costly mistakes to have much smaller probability of occurrence than the
less costly ones.

However to show that this issue is not fully resolved by the proper equilibrium let us
discuss a 3 player game shown in Table 3.3 taken from [22]. If we limit third players action
only to α3 (left table) then (α1, α2, α3) is an unique proper equilibrium of this game. However
by adding second action β3 for third player, which is strictly dominated, we create another
proper equilibrium (β1, β2, α3), and so we see that even though proper equilibrium �xes this
issue in some games, there are still examples where the undesirable equilibria get picked.

3.3 Re�nements in Extensive-form Games

The main shortcoming of Nash equilibrium in extensive-form games is, that it guarantees
rational behavior only when the rest of the players play rationally, with no concern for gains
possibly caused by mistakes of said opponents. We distinguish two types of mistakes against
which one would like to be optimal. The �rst type is called mistakes in the past. When this
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Figure 3.1: (a) A game where player 1 needs to consider mistake in the future of player 2.
(b) A game where player 2 needs to consider mistake in the past.

mistake occurs a player �nds himself in the part of the tree, which he didn't expect to visit,
when considering rational opponent. As an example consider the game from Figure 3.1(b).
In this game, there is no motivation for player 2 to prefer R over L, since he expects player
1 to always choose U immediately ending the game. The second type of mistakes is called
mistakes in the future. To be optimal against this type of mistakes, player i should push
his opponent to situations, where he needs to choose between for him bad and good actions.
The opponent then �nds himself in situations where the potential mistakes are as costly as
possible. As an example consider the game from Figure 3.1(a). Here player 1 should always
prefer D to U since he can only gain by playing D if player 2 makes a mistake by playing
L. Following solution concepts will attempt to exploit these types of mistakes.

3.3.1 Subgame perfect equilibrium

Solution concept due to Kuhn [6]. Strategy pro�le B of game G is a subgame perfect
equilibrium, if for every subgame G′ of G holds that B prescribes behavior consistent with
Nash equilibrium of G′. A subgame is a subset of the original game with following properties.
(1) the root of the subgame is not in the information set with any other game state of the
original game. (2) if a game state belongs to the subgame, all its successors must also belong
to the subgame. (3) if a game state belongs to the subgame, all the nodes contained in the
same information set must be also included in the subgame. Set of the subgame perfect
equilibria forms a non-empty subset of Nash equilibria [6].

If we try this approach to our motivational game in Figure 3.1(b), we indeed see that
the only subgame perfect equilibrium is (U,R), since playing L would violate equilibrium in
subgame after action D of player 1. This is not a coincidence, since when the subgames are
well de�ned subgame perfect equilibium generates strategies optimal against the mistakes
in the past. In the game from Figure 3.1(a) there are two subgame perfect equilibria (U,L)
and (D,R) because optimality in subgames cannot exploit mistakes in the future. There
are further issues with subgame perfection. For example let us consider the game in Figure
3.2. As we can easily see, this game has no subgames (except for the game itself), since the
initial action of chance is unobservable for both players and so subgame perfect equilibrium
doesn't add any more restrictions to Nash equilibrium.
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Figure 3.2: A game with no subgame

3.3.2 Undominated equilibrium

An undominated equilibrium in extensive-form games is a Nash equilibrium which consists
only of those strategies, which are not weakly dominated by any other strategy. Note that
the de�nition is equal to the de�nition of undominated equilibrium in normal-form games
and so an undominated equilibrium of an extensive-form game is undominated equilibrium
of its corresponding normal-form game and vice versa. For the two player zero-sum games
holds, that every undominated equilibrium is a perfect equilibrium of the corresponding
normal-form game [22].

The only undominated equilibrium of the game from Figure 3.1(a) is (D,L), because D
weakly dominates U . The games from Figure 3.1(b) and 3.2 are also solved correctly with
the unique undominated equilibria (U,R) and (b, d). Unfortunately, there are issues with
undominated equilibrium in the game from Figure 3.3. This game is called Matching pennies
on Christmas morning, which is a modi�cation of the zero-sum game Matching pennies,
where player 2 hides a penny and player 1 proceeds to guess whether it is heads up or tails up.
If he guesses correctly he receives 1, 0 otherwise. When played on Christmas morning player 2
has additional possibility to give player 1 a gift of 1, no strings attached. The optimal strategy
we would expect to see is for player 2 to not give player 1 the free gift and uniform distribution
over actions in the rest of information sets. The undominated equilibrium however doesn't
add any restriction to Nash equilibrium solutions, because neither of the strategies h′ and t′

dominates the other. And so all strategies where δ2(TN ′) = δ2(HN) = δ1(t) = δ1(h) = 0.5,
δ2(TG

′) = δ2(HG) = 0 are consistent with both Nash and undominated equilibrium.

3.3.3 Sequential equilibrium

Solution concept due to Kreps and Wilson [5], which can be seen as a generalization of
subgame perfect equilibrium to games with imperfect information, resolving issues with
badly de�ned subgames by introducing notion of beliefs over undistinguishable states in
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information sets. Insisting on sequentiality rules out equilibria not optimal against the
mistakes of the opponent in the past. Let us �rst de�ne two notions.

De�nition 9. A system of beliefs is a mapping µ

µ : S(I)→ [0, 1], ∀I ∈ I (3.12)

where S(I) is set of all states contained in information set I. It must hold that

∀I :
∑
s∈S(I)

µ(s) = 1 (3.13)

Less formally, the system of beliefs is player's assumption about the real state of the
game, given an information set.

De�nition 10. An assessment is a pair (µ,B), where µ is system of beliefs and B is a

behavioral strategy pro�le.

De�nition 11. An assessment (µ,B) is consistent if there exists sequence {µε, Bε}ε↓0 where
Bε is completely mixed behavior strategy pro�le and µε is a system of beliefs generated by

Bε, such that

lim
ε→0

(µε, Bε) = (µ,B) (3.14)

Sequential equilibrium is an assessment (µ,B) which is consistent and for which B is
sequential best response against (µ,B). Every sequential equilibrium is subgame perfect
and is guaranteed to exist [5]. One of the positive properties of sequential equilibrium is,
that it exploits mistakes made by opponent in the past. It doesn't however exploit possible
mistakes in the future. So for the game from Figure 3.1(a) there are again two sequential
equilibria (U,L) and (D,L) because the introduction of beliefs doesn't in any way help with
the mistakes in the future. The game from Figure 3.1(b) has only one sequential equilibrium
because it further re�nes subgame perfection. Furthermore thanks to the beliefs the only
sequential equilibrium of the game from Figure 3.2 is the only rational one (b, d).

3.3.4 Quasi-perfect equilibrium

Informally solution concept due to van Damme [21] that requires each player at every infor-
mation set to take a choice optimal against mistakes of the opponent.

De�nition 12. Fix an information set Ii. Let i be player which makes decision in Ii. An

Ii-local puri�cation of behavioral strategy bi is a behavioral strategy for i created by replacing

the behavior of i in Ii and every information set of i encountered after Ii, by behavior that

puts all probability mass on single action in these sets.

As an example consider the behvioral strategy in the game from Figure 3.3 b2(T ) = 1,
b2(N

′) = b2(G
′) = 0.5. There are two local puri�cations of the information set reached by

the action T , namely b2(T ) = b2(N
′) = 1 and b2(T ) = b2(G

′) = 1.

De�nition 13. We say that an Ii-local puri�cation is an Ii-local best response to b−i if it
achieves the best expected payo� among all Ii-local puri�cations.
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Figure 3.3: Matching Pennies on Christmas Morning [10]

De�nition 14. Ii-local puri�cation b
′
i is ε-consistent with bi, if bi assigns behavioral proba-

bility strictly bigger than ε to the actions to which b′i assigns 1 in Ii and following information

sets of player i.

Strategy pro�le B is ε-quasi perfect if it is fully mixed and if for each player i and every
information set Ii belonging to i, all Ii-local puri�cations of bi that are ε-consistent with bi
are Ii-local best responses to b−i. Strategy pro�le is quasi-perfect equilibrium if it is the limit
point when ε goes to 0 of ε-quasi perfect strategy pro�les. Every quasi-perfect equilibrium is
sequential and every game possesses at least one quasi-perfect equilibrium [21]. Quasi-perfect
equilibrium of extensive-form game is a perfect equilibrium of corresponding normal-form
game [21].

Thanks to the fact that quasi-perfect equilibrium is the intersection of sequential and
normal-form perfect equilibrium (undominated for two-player zero-sum games) all the games
from �gures 3.1(a), 3.1(b) and 3.2 are solved correctly. There is however still the issue with
Matching pennies on Christmas morning from Figure 3.3, since neither sequentiality nor
undominated equilibrium constraints δ(t′) and δ(h′).

3.3.5 Normal-form proper equilibrium

An equilibrium in behavioral strategies of an extensive-form game is said to be normal-
form proper [10] if it is behaviorally equivalent to a proper equilibrium of the corresponding
normal-form game. This equilibrium is optimal against mistakes of opponent in the past
and in the future. Furthermore, the solution concept assumes that these mistakes are made
in a rational manner, meaning that the more costly mistakes are made with exponentially
smaller probability than the less costly ones. Finally, as shown in [10], every normal-form
proper equilibrium is quasi-perfect and the set of normal-form proper equilibria of every
extensive-form game is non-empty.

Since every normal-form proper equilibrium is also quasi-perfect, games from Figures
3.1(a), 3.1(b) and 3.2 are again solved properly. In addition Matching pennies on Christmas
morning has unique normal-form proper equilibrium with δ(h′) = δ(t′) = 0.5.
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Figure 3.4: A game with unique perfect equilibrium

3.3.6 Perfect equilibrium

Solution concept due to Selten [16] that requires that each player at every information set
takes a choice which is optimal against mistakes of all players (including himself) in the
future and in the past. Let us �rst de�ne ε-perfect equilibrium. Strategy pro�le B is
ε-perfect equilibrium of extensive game G i�

Ui(I, a|B) < Ui(I, a
′|B)⇒ bi(I, a) ≤ ε, ∀i ∈ P,∀I, ∀a, a′ ∈ A(I) (3.15)

Strategy pro�le is perfect equilibrium if it is the limit point of ε-perfect equilibria as ε goes
to 0. Every perfect equilibrium is sequential, but the opposite doesn't hold and the set of
perfect equilibria of any game is non-empty [16]. Note that perfect equilibria of normal-form
game need not be perfect equilibria in corresponding extensive-form game and vice versa.

The game from Figure 3.4 has two normal-form proper (implying quasi-perfect, undom-
inated etc.) equilibria (U,L) and (D,L), because none of the previously mentioned re�ne-
ments consider mistakes of all players. The only perfect equilibrium of this game is (D,L),
because action U is, according to perfection insensible thanks to the possibility of playing R
by mistake.

3.3.7 Proper equilibrium

Solution concept due to Myerson [11] optimal against the mistakes of all players. These
mistakes are assumed to be made in rational manner, meaning that the more costly mistakes
are made with the probability of order of magnitude smaller than the less costly ones. A
strategy pro�le in behavioral strategies is said to be proper if it is a limit point of ε-proper
strategy pro�les B, such that

Ui(I, a|B) < Ui(I, a
′|B)⇒ bi(I, a) ≤ ε · bi(I, a′), ∀i ∈ P,∀I, ∀a, a′ ∈ A(I) (3.16)

as ε goes to 0. Every proper equilibrium is perfect and every extensive-form game has
non-empty set of proper equilibria [22].
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Figure 3.5: (a) The game where properness rules out all insensible equilibria (b) The game
where normal-form properness rules out all insensible equilibria.

To demonstrate the improvement of the proper equilibrium over the perfect one, let us
introduce the game from Figure 3.5(a), taken from [22]. There is a perfect equilibrium (L, r)
supported by beliefs of player 2 that the mistake M has a bigger probability of occurrence
than R. This belief is however not sensible since R dominates M . And so the only sensible
equilibrium is (R,L) which is the only one consistent with the properness.

Figure 3.6: (a) The relations between re�nements in two-player zero-sum extensive-form
games. (b) The relations between re�nements in normal-form games.

However thanks to the fact that only actions at the same information set are compared,
not all insensible equilibria will be excluded. As an example see the game from Figure 3.5(b)
taken from [22]. (L,L′, r) is a perfect and proper equilibrium here. It is however not sensible
since upon reaching his choice, player 2 should realize that player 1 will always prefer L′ to
R′ and so he should expect that this set was reached by R, implying that he should play l.
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So the only sensible equilibrium is (R,L′, l). The only solution concept generating only this
equilibrium as a result is normal-form proper equilibrium.

In this chapter the most known re�nements of Nash equilibrium were introduced. The
relations between these re�nements are depicted in 3.6. Their theoretical strength was
discussed using number of examples. This thesis will focus on two-player zero-sum extensive-
form games and the re�nements which exploit mistakes of the opponent, mainly because the
Double oracle algorithm cannot take advantage of the optimality against mistakes of the
player itself and also because it allows us to use fast linear programming methods based on
e�cient sequence-form representation. And so only undominated, quasi-perfect and normal-
form proper equilibria will be used. Chapter 5 provides evaluation of these re�nements on
larger games, inspired in real world applications, to check if their real performance re�ects
their theoretical properties and to determine the most suitable re�nement for application to
the Double oracle algorithm.
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Chapter 4

Algorithms for computing Nash

equilibrium re�nements

This chapter introduces algorithms behind the computation of Nash, undominated, quasi-perfect
and normal-form proper equilibria. All of these algorithms make use of the linear program-
ming exploiting sequence-form representation of extensive-form games. Main shortcomings
of each algorithm, such as numerical stability issues, are discussed.

Figure 4.1: Matching Pennies on Christmas Morning [10]

4.1 Nash equilibrium

We �rst describe the algorithm for computing Nash equilibrium that exploits the sequence
form due to Koller et al. [4]. In eqs. (4.1) to (4.4) we present a linear program (LP) for
solving two player zero-sum extensive-form games. Matrix A is a utility matrix with rows
corresponding to sequences of player 1 and columns to sequences of player 2. Each entry
of A corresponds to the expected utility value of a game state reached by the sequence
combination assigned to this entry, weighted by the probability of occurrence of this state

19
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considering nature. If the reached state is non-terminal, or if the executing of actions from
the sequence combination leads to a state, with no actions from the sequence combination
applicable, yet there are still unplayed actions in the sequence combination, the entry is 0.
Matrices E and F de�ne the structure of the realization plans for player 1 and 2 respectively.
Columns of these matrices are labeled by sequences and rows by information sets. Row for
information set I contains −1 on a position corresponding to a sequence leading to I, 1
for the sequences leading from I and zeros otherwise. First row, corresponding to arti�cial
information set has 1 only on position for empty sequence. These matrices ensure that for
every information set Ii the probability with which we play a sequence leading to Ii is equal
to sum of probabilities of sequences leaving Ii according to ri. Vectors e, f are indexed by
sequences of players and consist of zeros, but with 1 on the �rst position. q is a vector of
variables representing values in information sets of the opponent. The constraint in (4.3)
enforces the structure of realization plan and the constraint in (4.2) tightens the upper bound
on value in each of the opponent's information sets I2 for every sequence leaving I2.

max
r1,q

f>q (4.1)

s.t. −A>r1 + F>q ≤ 0 (4.2)

Er1 = e (4.3)

r1 ≥ 0 (4.4)

As an example let us show the matrices and vectors needed for the computation of
sequence-form LP of the game Matching pennies on Christmas morning from Figure (4.1) in
the eqs. (4.5) to (4.7). λ1 and λ2 stand for the arti�cial information sets, which preceede the
topmost information sets reached by empty sequence of the players making choice in them.
The vectors e and f were omitted due to simplicity.

E =


[ ] h t h′ t′

λ1 1
I4 −1 1 1
I5 −1 1 1

 (4.5)

F =


[ ] H T HN HG TN ′ TG′

λ2 1
I1 −1 1 1
I2 −1 1 1
I3 −1 1 1

 (4.6)

A =



[ ] H T HN HG TN ′ TG′

[ ]
h 1
t 1
h′ 2 1
t′ 1 2

 (4.7)
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4.2 Undominated equilibrium

Undominated equilibrium is de�ned as a Nash equilibrium in undominated strategies. It can
be computed using 2 LPs. First LP depicted in eqs. (4.1) to (4.4) solves the game for Nash
equilibrium. The value of the game computed by this LP is then supplied to the second LP,
presented in eqs. (4.8) to (4.12), via constraint (4.9) to ensure, that the realization plan
r1 computed by this LP is a Nash equilibrium. Second modi�cation of this LP is in the
objective, using rm2 which is a uniform realization plan for the minimizing player.

max
r1,q

r>1 Ar
m
2 (4.8)

s.t. f>q = v0 (4.9)

−A>r1 + F>q ≤ 0 (4.10)

Er1 = e (4.11)

r1 ≥ 0 (4.12)

The restriction to undominated strategies is enforced by the objective (4.8). The best re-
sponse to a fully mixed strategy cannot contain dominated strategies and thus we have that
r1 is undominated and therefore normal-form perfect for two-player zero-sum games [22].

rm2 =



[ ] 1
H 0.5
T 0.5
HN 0.25
HG 0.25
TN ′ 0.25
TG′ 0.25


(4.13)

As an example we provide the matrices and vectors needed for computation of undom-
inated equilibrium of the game Matching pennies on Christmas morning from Figure 4.1.
The matrices E, F and A and vectors e and f are the same as in eqs. (4.5) to (4.7). The
realization plan rm2 used in the objective of the second LP is depicted in (4.13). The objective
maximized in this LP is for clarity shown in (4.14). As we can see, the objective doesn't
help at all in this domain, since for any r1(t′) and r1(h′) consistent with the de�nition of
realization plan, the objective value remains the same. This is caused by the fact that neither
of these strategies dominates the other.

max
r1,q

r1(h) · 0.25 + r1(t) · 0.25 + r1(h
′) · 0.75 + r1(t

′) · 0.75 (4.14)

4.3 Quasi-perfect equilibrium

Quasi-perfect equilibrium is a restriction of Nash equilibrium, which prescribes the optimal
play against mistakes of the opponent in the past and in the future. In (4.15) to (4.19) we
present LP due to Miltersen et al. [9]. The main idea of this approach is to use symbolic
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perturbations of strategies, with ε as a parameter, and then use a parameterizable simplex
algorithm to solve this LP optimally. The results of such an algorithm are strategies expressed
as polynomials in ε, which are then used to reconstruct the realization plans even in those
information sets which are not reachable when considering a rational opponent (see [9] for
the details of this transformation). Vectors l(ε) and k(ε) are indexed by sequences and
contain above mentioned symbolic perturbations forcing this LP to create a quasi-perfect
equilibrium. Vector v contains slack variables forcing the player to exploit the weak strategies
of the opponent, matrices A, E and F , and vectors e,f , and q are as before.

max
r1,v,q

q>f + v>l(ε) (4.15)

s.t. F>q ≤ A>r1 − v (4.16)

r1 ≥ k(ε) (4.17)

Er1 = e (4.18)

v ≥ 0 (4.19)

Even though Miltersen et al. argue in [9] that it is possible to solve this LP using a non-
symbolic perturbation, the ε required for such a computation can be too small for �oating
point arithmetics. Therefore, one either needs to use an unlimited precision arithmetics, or
the parameterizable simplex algorithm to compute the equilibrium, which limits the scala-
bility.

As an example let us introduce the matrices and vectors needed for computation of the
quasi-perfect equilibrium on the game Matching pennies on Christmas morning from Figure
4.1. The matrices E, F and A and the vectors e and f are the same as in eqs. (4.5) to (4.7).
The vectors l(ε) and k(ε), containing the symbolic perturbations, are depicted in eqs. (4.20)
and (4.21). Every ε in these vectors has the power equal to the length of the corresponding
sequence (ε0 for [ ], ε1 for h etc.).

l(ε) =



[ ] 1
H ε
T ε
HN ε2

HG ε2

TN ′ ε2

TG′ ε2


(4.20)

k(ε) =


[ ] 1
h ε
t ε
h′ ε
t′ ε

 (4.21)

Vector v ensures that the realization plan r1 is chosen in such a way that it exploits the
mistakes made by the opponent. It uses the observation that the slack value of the constraints
of type (4.16) corresponds to the exploitability of the opponents mistake in given information
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set. In other words, when there is no slack in the constraint even though it is possible to
achieve one, the opponents mistakes are not exploited in the corresponding informations
set. The slack value e�ectively indicates how much one can gain over the expected value
of given information set if the opponent plays the sequence corresponding to the constraint
with slack. Therefore we want the slack to be present in every constraint of the type (4.16),
if possible. This is exactly the purpose of the vector v, since by maximizing it, we maximize
the slacks in the constraints. For clarity we depict the two constraints corresponding to the
exploitable sequences containing the gift action of player 2 in the (4.22) and (4.23).

q(I3)− 2r1(t
′)− r1(h′) + v(TG′) ≤ 0 (4.22)

q(I3)− 2r1(h
′)− r1(t′) + v(HG) ≤ 0 (4.23)

The issue with this approach is that the value of the objective depicted in (4.24) is the same
in the case that the slack is maximal in the constraint (4.22), (4.23), or arbitrarily divided
between these two. However to obtain the desired behavior r(h′) = r(t′) = 0.5 the slacks
need to be equal, and so the quasi-perfect equilibrium doesn't guarantee optimality.

max q(λ) + v([ ]) + ε · v(H)+ε · v(T ) + ε2 · v(TN ′) + (4.24)

+ ε2 · v(TG′) + ε2 · v(HN)+ε2 · v(HG)

4.4 Normal-form proper equilibrium

Normal-form proper equilibrium is a Nash equilibrium optimal against the mistakes of the
opponent, while assuming that the probability of the mistakes depends on the potential
loss for such a mistake. The algorithm for computing normal-form proper equilibria of
extensive-form zero-sum games is due to Miltersen et al. [10] and it is based on an iterative
computation of LP pairs V and W shown in eqs. (4.25) to (4.37). In the k-th iteration
the LP V generates a strategy that exploits all marked exploitable sequences. The LP uses
a set of vectors {m1, ...,mk}, where mi ∈ {0, 1}|f | represent labels that denote exploitable
sequences based on the results of W (i−1), and set {v(1), ..., v(k−1)}, where v(i) is a value of
V (i); t is a scalar which is used in further iterations as v(k). The constraint (4.27) ensures,
that the computed strategy is a Nash equilibrium.

V (k) : max
r1,q,t

t (4.25)

s.t. −A>r1 + F>q +m(k)t ≤ −
∑

0<i<k

m(i)v(i) (4.26)

f>q = v(0) (4.27)

Er1 = e (4.28)

r1 ≥ 0 (4.29)

t ≥ 0 (4.30)

LPW in k-th iteration marks sequences, which are still exploitable, given previous iterations
and V (k). Vector u is used to identify exploitable sequences and variable d is used as an
auxiliary scalar for scaling purposes. This algorithm is initialized by V (0) which is a LP
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generating Nash equilibrium from eqs. (4.1) to (4.4) and W (0) which is equal to W (k)

only with the sum from constraint (4.32) omitted, since there are no results from previous
iterations.

W (k) : max
r1,q,u,d

1>u (4.31)

s.t. −A>r + F>q + u ≤ −
∑

0<i≤k
m(i)v(i)d (4.32)

Er1 − ed = 0 (4.33)

f>q − v(0)d = 0 (4.34)

0 ≤ u ≤ 1 (4.35)

r1 ≥ 0 (4.36)

d ≥ 1 (4.37)

Although this procedure runs in polynomial time since the number of LP pairs is bounded by
the number of sequences of the opponent, in practice this approach can su�er from numerical
precision errors when used for solving larger games. The primary reason of this instability
is the error that cumulates in equation (4.32).

Let us again demonstrate this approach on the game from Figure 4.1. First we need to
calculate the sequence-form LP, the matrices E, F , A and the vectors e and f are again
the same as in eqs. (4.5) to (4.7). Next step is the detection of exploitable sequences,
consistent with the current formulation (note the constraints (4.27) and (4.34), which force
every following LP to compute Nash equilibrium). The detection is performed using the
variable vector u which contains 1 for those sequences which are associated with a constraint
with slack. The result of W 0 is u(HG) = 1, u(TG′) = 1, u(H) = u(T ) = u(TN ′) =
u(HN) = 0 and so the exploitable sequences marked by this LP are TG′ and HG′, based
on the constraints (4.38) and (4.39). These constraints correspond to the sequence TG′ and
HG′ and both have slack achievable in them.

q(I3)− 2r1(t
′)− r1(h′)− u(TG′) ≤ 0 (4.38)

q(I3)− 2r1(h
′)− r1(t′)− u(HG) ≤ 0 (4.39)

The constraints corresponding to these sequences get the scalar variable t added in the
following LP V 1. The resulting constraints are for clarity depicted in (4.40) and (4.41).
The purpose of t is to balance slacks in constraints corresponding to exploitable sequences.
Variable t is maximised in this LP and so the slack in both constraints will be equal and
its value will be set to the minimum of maximal achievable slack in constraints (4.40) and
(4.41). This ensures that r1 will prescribe the desired behavior r1(h′) = r1(t

′) = 0.5, because
the slack will be balanced in both constraints. Note the improvement over the previous
approach in the quasi-perfect equilibrium, where there was no quarantee that the slacks will
be balanced, which caused the issues with the solution quality.

q(I3)− 2r1(t
′)− r1(h′) + t ≤ 0 (4.40)

q(I3)− 2r1(h
′)− r1(t′) + t ≤ 0 (4.41)
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W 1 again attempts to detect the exploitable sequences consistent with the current for-
mulation, but since constraints corresponding to the exploitable sequences TG′ and HG
(depicted in (4.42) and (4.43)) are already exploited, there are no more exploitable se-
quences and the algorithm terminates. The fact that there is no possible slack present in
these constraints is ensured by the negative scaling variable d, added to the right side of
these constraints.

q(I3)− 2r1(t
′)− r1(h′)− u(TG′) ≤ −d (4.42)

q(I3)− 2r1(h
′)− r1(t′)− u(HG) ≤ −d (4.43)

This chapter introduced algorithms used for computation of Nash, undominated, quasi-
perfect and normal-form proper equilibria. As mentioned, quasi-perfect and normal-form
proper equilibria have limitations of applicability thanks to numerical stability issues and
time constraints. The Chapter 5 resolves whether the performance makes up for these
shortcomings.
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Chapter 5

Re�nement Comparison

This chapter compares the practical performance of the di�erent variants of re�nements of
Nash equilibrium strategies. Since all the compared strategies are Nash equilibrium strate-
gies, they cannot be exploited, and thus we are interested in the expected value of these
strategies against imperfect opponents.

5.1 Imperfect Opponents

Two types of imperfect opponents were used. First type is not fully converged strategy from
anytime algorithms used for solving extensive-form games in practice, and second is a game-
theoretic model called Quantal-response equilibrium that simulates the decisions made by
human opponents.

We use two di�erent algorithms for generating the imperfect opponents of the �rst
type: counter-factual regret minimization (CFR) algorithm [25] and Monte-Carlo tree search
(MCTS).

5.1.1 Counter-factual regret minimization

CFR is a regret minimizing algorithm. The high-level idea of this algorithm is to iteratively
traverse the whole game tree, updating the strategy with an aim to minimize the overall
regret, de�ned as follows.

RTi =
1

T
max
b∗i∈Bi

T∑
t=1

(ui(b
∗
i , b

t
−i)− ui(Bt)) (5.1)

T denotes current iteration of the algorithm. The overall regret is decomposed to the set
of additive regret terms, which can be minimized independently. These terms are called
counterfactual regrets and are de�ned on the individual information sets as follows.

RTi,imm(I) =
1

T
max
a∈A(I)

T∑
t=1

πB
t

−i (I)(ui(I, a|Bt)− ui(I,Bt)) (5.2)

27
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πB
t

−i stands for the probability of reaching I given the opponent and nature, ui(I, a|B) is
the expected utility in information set I when players play according to Bt except for i in I
playing a and ui(I,Bt) is expected value in I when players play according to Bt. Intuitively
it is players regret in I of following his strategy.

In [25] is shown that the sum of all counterfactual regrets is a upper bound of the overall
regret. To minimize the counterfactual regrets, the algorithm maintains in all information
sets

RTi (I, a) =
1

T

T∑
t=1

πB
t

−i (I)(ui(I, a|Bt)− ui(I,Bt)) (5.3)

for all actions. We denote RT,+i (I, a) = max(RTi (I, a), 0). The update rule for the strategy
is then de�ned as follows.

BT+1
i (I, a) =


RT,+

i,imm(I,a)∑
a∈A(I)R

T,+
i,imm(I,a)

if
∑

a∈A(I)R
T,+
i,imm(I, a) > 0

1
|A(i)| otherwise

(5.4)

This rule updates the strategy to minimize the counterfactual regrets, simultaneously
minimizing the overall regret, causing convergence of average strategy pro�le de�ned as

B̄t(I, a) =

∑T
t=1 π

Bt

i (I)Bt(I, a)∑T
t=1 π

Bt

i (I)
(5.5)

to Nash equilibrium.

5.1.2 Monte-Carlo tree search

The MCTS is an iterative algorithm evaluating the domain based on a huge number of
simulations and building of the tree containing most promising nodes. Each iteration consists
of several steps.

1. Selection: Algorithm traverses the already build part of the tree choosing nodes based
on some evaluation strategy. When it reaches node with no successors included in the
partially build tree it expands this node according to the rules described next.

2. Expansion: When selection reaches leaf node of the partially build tree, expansion
adds all of it's successors to this tree and runs simulation from one of them.

3. Simulation: Simulation performs one playthrough from given node to the terminal
node of original game, with actions chosen randomly, by domain speci�c heuristic or
based on opponents model.

4. Backpropagation: Backpropagation updates every node on the path from the root to
the leaf node of the partially build tree with the value obtained from simulation.
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MCTS is used in its most typical game-playing variant: UCB algorithm due to Kocsis et
al. [3]

ui = vi + C

√
ln(N)

ni
(5.6)

is used as the selection method and it is used in each information set (this variant is termed
Information Set MCTS [2]). The ui is a value of node i which will be used to choose the
node, vi is an average value of all previous visits of node i, ni stands for the visit count of
the node i and N number of visits of the parent node of i. C serves as a parameter tuning
the eploitation and exploration of the tree. The lower C means that the value vi is more
important for node selection and higher C increases the value of less frequently visited nodes.

An additional modi�cation made to MCTS is nesting�MCTS algorithm runs for certain
number of iterations, and then advances to each of the succeeding information sets and
repeats the whole procedure. This ensures equally reasonable strategies in all parts of the
game tree, which is not the case in regular approach, since the deeper parts of the tree are
visited less often then the parts closer to root.

The behavioral strategy over actions in each information set corresponds to the frequen-
cies, with which the MCTS algorithm selects the actions in this information set. Contrary
to CFR, there are no guarantees for convergence of this variant of MCTS in imperfect-
information games [17].

5.1.3 Quantal-response equilibrium

The opponents of the second type correspond to quantal-response equilibrium (QRE) [8].
Calculation of QRE is based on a logit function with precision parameter λ [20]. The logit
function prescribes the probability for every action in every information set as follows.

B(I, a) =
eλu(I,a|B)∑

a′∈A(I) e
λu(I,a′|B)

(5.7)

We can sample the strategies for speci�c values of the λ parameter. By setting λ = 0 we
get uniform fully mixed strategy and when increasing λ we obtain a behavior, where players
are more likely to make less costly mistakes rather then completely incorrect moves, with
quaranteed convergence to sequential equilibrium when λ approaches ∞.

The iterative manner of MCTS and CFR allow sampling of the strategies before the full
convergence is achieved, to generate opponents of increasing quality. Same can be achieved
by repetitive computation of QRE with increasing λ.

5.2 Experimental domains

The performance of the re�ned strategies is compared on Leduc holdem, imperfect-information
variant of the card game Goofspiel, and randomly generated extensive-form games. The
games were chosen, because they di�er in cause of imperfect information; for Leduc holdem
poker the uncertainty is caused by the unobservable actions of nature at the beginning of
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the game, while in imperfect information variant of Goofspiel and Random games the un-
certainty is caused by partial observability of opponents moves. The size of evaluated games
correspond to the maximal sizes of games, for which we were able to compute quasi-perfect
and normal-form proper equilibrium in reasonable time and without numerical precision
errors.

5.2.1 Leduc holdem poker

Leduc holdem poker [23] is a variant of simpli�ed Poker using only 6 cards, namely {J, J,Q,Q,
K,K}. The game starts with an ante of value 1, after which each of the players receives
a single card and a �rst betting round begins. In this round player 1 decides to either bet,
adding 1 to the pot, or to check. If he bets, second player can either call, adding 1 to the
pot, raise adding 2 to the pot or fold which automatically ends the game in the favour of
player 1. If player 1 checks, player 2 can either check or bet. If player 2 raises after a bet,
player 1 can either call or fold ending the game in the favour of player 2. This round ends
either by call or by check from both players. After the end of this round, one card is dealt on
the table, and a second betting round with the same rules begins. After the second betting
round ends, the outcome of the game is determined. A player wins if (1) her private card
matches the table card, or (2) none of the players' cards matches the table card and her
private card is higher than the private card of the opponent. If no player wins, the game is
a draw and the pot is split.

5.2.2 Goofspiel

Goofspiel [14] is a card game with three identical packs of cards, two for players and one
randomly shu�ed and placed in the middle. In our variant both players know the order of
the cards in the middle pack. The game proceeds in rounds. Every round starts by revealing
the top card of the middle pack. Both players proceed to simultaneously bet on it using
their own cards, which are discarded after the bet. Player with higher bet (higher value of
card used) wins the card. After the end of the game, player with higher sum of values of
cards collected wins.

5.2.2.1 Imperfect-information Goofspiel

In an imperfect-information version of Goofspiel, the players do not observe the bet of the
opponent and after a turn they only learn whether they have won, lost, or if there was a tie.

5.2.3 Random games

Random games are games where several characteristics are randomly modi�ed: the depth
of the game (number of moves for each player) and the branching factor representing the
number of actions the players can make in each information set. Moreover, each action of
a player generates some observation signal (a number from a limited set) for the opponent
� the states that share the same history and the same sequence of observations belong to
the same information set. Therefore, by increasing or decreasing the amount of possible
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observation signals we increase or decrease the number of information sets in the game (e.g.,
if there is only a single observation signal, neither of the players can observe the actions of
the opponent). The utility is calculated as follows: each action is assigned a random integer
value uniformly selected from the interval −l,+l for some l > 0 and the utility value in a
leaf is a sum of all values of actions on the path from the root of the game tree to the leaf.
This method for generating the utility values is based on random T-games [18] that create
more realistic games using the intuition of good and bad moves.
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Figure 5.1: Overview of the utility value for di�erent equilibrium strategies. Results for a
single type of imperfect opponent are depicted in columns (CFR, MCTS, QRE), the results
for a single domain are depicted in rows (Poker, Goofspiel, Random Games).
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5.3 Experimental Settings

We have implemented the algorithms for computing Nash, undominated1, and normal-form
proper equilibrium, and we use IBM CPLEX 12.5 for solving LPs. We also implemented
CFR and MCTS algorithm as described. We use Gtf framework2 for computing quasi-perfect
equilibrium and Gambit [7] for computing quantal-response equilibrium. The Gtf framework
uses simplex with symbolic perturbations, which limits it's scalability.

We analyze the performance of the re�ned strategies within an interval determined by
the worst and best possible NE strategy against a speci�c opponent strategy. These bounds
are computed via the LPs used for the undominated equilibrium. To compute the best NE
against a strategy, we use the strategy against which the re�nements are currently measured
in the objective of the second LP. Moreover, if we change the objective to min in such
modi�ed LP, we compute the worst NE.

5.4 Results

The overall absolute results are depicted in Figure 5.1, the interval between the worst and the
best NE is the grey area; SQF denotes NE computed using sequence-form LP; UND denotes
undominated equilibrium; QPE quasi-perfect; and NFP normal-form proper equilibrium.
The relative results in the interval between the best and the worst NE are for clarity depicted
in the Figure 5.2.

The �rst rows shows the absolute and relative utility values gained by di�erent re�ne-
ments against di�erent opponents on Leduc holdem from the perspective of player 1 (note
the logarithmic scale of x-axis in case of CFR and QRE). The results show that all the
re�nements have similar performance against all opponents and they all outperform SQF
strategy. The similarity of NFP, QPE, and UND re�nements can be demonstrated by the
maximal di�erence in absolute utility values between re�nements that is equal to 0.03�this
occurs against QRE and it is caused by near-optimal performance of UND against QRE for
small λ. This is expected since the QRE strategy for small λ is similar to uniformly mixed
strategy, to which UND computes the best NE strategy. Besides that the absolute di�erences
were mostly marginal: 6 · 10−5 for CFR and 8 · 10−3 for MCTS. The high relative di�erences
for the QRE for high values of λ are caused by the interval of almost zero size. The interval
is so small because the solution of QRE is very close to NE implying that all re�nements
score very close to the value of game. The di�erences are then caused by numerical precision
issues, when computing relative value over this small interval.

Results on the random games with branching factor 3, depth 3 and 3 possible observations
are shown in second rows of Figures 5.1 and 5.2. These results are computed as an average
over 10 di�erent random games generated with the selected properties but di�erent structure
of informations sets and utility values. The results are very similar as in poker, but the
di�erence between the re�nements and SQF decreased. The relative utility gain for QRE
opponent con�rms that for smaller λ the UND outperforms every other equilibrium, however
with increasing λ the undominated equilibrium gets worse and both QPE and NFP improves

1We use fully mixed uniform strategy of the opponent as the input.
2Available at http://www.cs.duke.edu/∼trold/gtf.html
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Figure 5.2: Overview of the utility value for di�erent equilibrium strategies. Results for a
single type of imperfect opponent are depicted in columns (CFR, MCTS, QRE), the results
for a single domain are depicted in rows (Poker, Goofspiel, Random Games).

their performance as the QRE converges to more rational strategies. Moreover, we performed
a di�erent set of experiments by varying the size of the observation set. When set to 1, the
game degenerates to a very speci�c imperfect-information game, where every action of a
player is unobservable to the opponent. Interestingly, in this setting all NE collapsed, there
was no di�erence between the worst and the best NE strategy, and thus neither between the
re�ned strategies.

Finally, we present results on imperfect information Goofspiel with 4 cards in the third
rows of Figures 5.1 and 5.2 (absolute utility values on y-axis for CFR are in ×10−3 due to
very small di�erences). The results are again computed as means of 10 di�erent random
orderings of the middle pack of cards. Again, there is a very similar pattern of behavior
against CFR and QRE opponents. Against the MCTS, however, the di�erence between the
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re�nements and the best NE strategy slightly increased. This is caused by the fact that
the MCTS reaches an irrational strategy composed of the correct pure strategies, however,
incorrectly mixed. This type of mistakes does not follow the model assumed in QPE and
NFP, and neither UND can optimally exploit this strategy. This setting present the only
case where further improvements in exploiting the mistakes of the opponent are possible.

Furthermore, to check, if the performance of undominated equilibrium remains consistent,
we have performed measurement on larger games. We were unable to compare all the
re�nements here since the other re�nements are unable to solve these domains. However the
undominated equilibrium achieved similar performance with respect to the worst and best
Nash equilibria.

The results on all domains and against all imperfect opponents o�er several conclusions.
First of all, all the re�nements typically perform very well and close to optimal NE strategy.
This indicates that it is unlikely that a new re�nement with dramatically better performance
can be de�ned. Secondly, the performance of all the re�nements is very similar in practice
(especially against CFR and MCTS) regardless of their theoretical assumptions. This is
interesting and suggest that the occurrence of situations that allow to exploit the mistakes
of the opponent are not that common in real-world games. Moreover, even though NFP
considers likeliness of mistakes of the opponent with respect to the potential loss, its perfor-
mance in practice was similar to QPE against this type of opponent. Finally, the presented
results show that in practical applications, it is su�cient to use UND re�nement: (1) the
performance is very similar to QPE and NFP, (2) it is much easier to compute compared
to more advanced solution concepts, since it does not require iterative process or unlimited
precision arithmetic, and (3) due to the simple computation it allows solving of much larger
games then the ones used in this thesis.



Chapter 6

Double-oracle algorithm

This chapter describes the Double-oracle algorithm operating on the sequence-form repre-
sentation of two-player zero-sum extensive-form games due to Bo²anský et al. [1].

This algorithm solves games iteratively. Each iteration consists of following steps

1. The algorithm creates a restricted game, where the players are allowed to select from
a limited set of sequences and actions.

2. The restricted game is solved using sequence-form LP.

3. A best response algorithm is used to �nd suitable expansion of the restricted game.

The main strength of this algorithm lies in it's iterative manner. It solves a series of
small LPs instead of single large one, trying to �nd as small restricted game as possible with
the same solution as the original game. This approach allows solving of games too large
for classical sequence-form LP along with a possible speed-up of computational time. For
further discussion of the performance of Double-oracle algorithm see [1].

Let us now discuss each part of the double algorithm in more detail.

6.1 Restricted game

The restricted game is formed by sequences Σ′ which are taken from the set of all sequences
of the original game Σ in such a way that if σ ∈ Σ′ all the pre�xes of σ also need to be
contained in Σ′. Furthermore for every σi ∈ Σ′i there exists compatible sequence σ−i ∈ Σ′−i,
meaning that the actions from these sequence can be all executed together.

6.1.1 Inconsistencies in the restricted game

There is an issues one needs to be aware of, when building restricted game. This issue
arises when adding σi to the restricted game, containing no sequence σ−i which would allow
full execution of σi. This e�ectively means that the execution creates a leaf node h of the
restricted game, which is an inner node of the original game, since it leads to a state where

35
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Figure 6.1: A demonstration of inconsistencies in the restricted game

player −i plays, but there is no action in the restricted game applicable. The actual problem
arrives when building the sequence-form LP, which requires utility value associated to every
terminal node. To solve this inconsistency h becomes a temporal leaf node in the restricted
game and gets a temporary utility value which needs to be set in a way which guarantees
the convergence of the whole algorithm. To ensure the convergence, the value must be a
lower bound for player −i playing in h. This implies that if h is not expanded, even though
it has the upper bound on its real utility value for player i assigned (meaning that not even
the upper bound makes h relevant to the solution), the real expected value will de�nitely
not be relevant to the solution. In our implementation we use the best response for player i
against the default strategy of player −i to get this value for player −i. The default strategy
is a strategy which uses the result computed by the sequence-form LP in the restricted game
space, expanded by the pure strategy returning �rst available action in every state outside
of the restricted game.

As an example of the inconsistency in the restricted game consider the game from Figure
6.1. The restricted game created by previous iterations of the algorithm is Σ1 = {A,AC},
Σ2 = {a}. The best response algorithm in the current iteration returns sequences B,BE for
player 1. When we try to add these sequences to the existing restricted game, we run into a
problem, because player 2 has no action to execute in the game state h reached by sequence
B. And so h becomes a temporal leaf node, with the utility value computed as described
above. The resulting restricted game will be Σ1 = {A,AC,B}, Σ2 = {a}.

6.2 Best response algorithm

The best response algorithm computes a pure strategy which is the best response to the
optimal strategy of the opponent of the player searching for the best response i in the
current restricted game along with its value. It traverses the game tree in depth-�rst search
manner with behavior of the opponent �xed to the strategy given by LP in the space of the
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restricted game and to the default strategy outside of it. During the depth �rst search a
bound is computed. This bound is used for domain independent pruning as will be shown
later. To completely describe the best response algorithm, we need to divide it to two cases.

6.2.1 Nodes of the other players

Data: h - current node, Ii current information set, r−i opponent's real. plan
extended by default strategy, λ - lower bound for h

Result: expected value in h
1 if h ∈ Z then

2 return ui(h) · r−i(seq−i(h)) · C(h)
3 end

4 w =
∑

a∈A(h) r−i(seq−i(h · a)) · C(h · a)

5 sort A(h) based on the probability of their occurrence
6 vh = 0
7 for a ∈ A(h) do
8 wa = r−i(seq−i(h · a)) · C(h · a)

9 λ′ = λ− (vh + (w − wa) · umax)
10 if λ′ ≤ wa · umax then
11 vh = vh+bestResponse(h · a, λ′)
12 w = w − wa
13 else

14 return umin · w
15 end

16 end

17 return vh

Algorithm 1: Best response algorithm for a node of the opponent or nature

First we analyse the behavior in the nodes of other players, the opponent and the nature.
Here we compute the expected value of given node based on the �xed behavior given by
sequence-form LP result, default strategy or �xed distribution of nature. The actions to
be evaluated are for performance reasons sorted in the descending order, according to the
probability of their occurrence. For every recursive call we compute the lower bound, based
on the sum of values of evaluated actions and assuming that the unevaluated actions all
yield the maximal achievable utility (line 9 in Algorithm 1). If the lower bound exceeds the
maximal achievable utility in given node, a cut-o� occurs (line 14 in Algorithm 1).



38 CHAPTER 6. DOUBLE-ORACLE ALGORITHM

6.2.2 Nodes of the searching player

Data: h - current node, Ii current information set, r−i opponent's real. plan
extended by default strategy, λ - lower bound for h

Result: expected value of the best action in h
1 if h ∈ Z then

2 return ui(h) · r−i(seq−i(h)) · C(h)
3 end

4 H ′ = {h′ : h′ ∈ Ii}
5 sort H ′ according to r−i(seq−i(h′)) · C(h′)
6 w =

∑
h′∈H′ r−i(seq−i(h

′)) · C(h)
7 amax = empty
8 va = 0,∀a ∈ A(h)
9 for h′ ∈ H ′ do

10 wh′ = r−i(seq−i(h
′)) · C(h′)

11 for a ∈ A(h′) do
12 if amax is empty then

13 λ′ = wh′ · umin
14 else

15 λ′ = vamax + w · umin − (va + (w − w′h) · umax)
16 end

17 if λ′ ≤ wh′ · umax then
18 vh

′
a = bestResponse(h′ · a, λ′)

19 va = va + vh
′
a

20 end

21 end

22 if h′ == h and vh
′
amax

< λ then

23 break;
24 end

25 amax = arg maxa∈A(h′) va
26 w = w − wh′
27 store vh

′
amax

28 end

29 return vhamax

Algorithm 2: Best response algorithm for a node of the searching player

In the nodes of the searching player the algorithm chooses the best action based on all
the states in the current information set but returns its value only in the current game
state. The game states of the information set are evaluated in descending order according to
their probability of occurrence, given the strategy of the opponent and nature. Once again
there is a lower bound computed for every recursive call (lines 13 and 15 in Algorithm 2).
This bound represents the value required to choose current action as the best one and is
again computed under the assumption that all the unevaluated actions will achieve the best
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possible value. The algorithm stores the best action, as it can be used when any other state
of current information set gets visited.

6.3 Player selection

In the implementation used in this thesis, every iteration of the main loop evaluates the
sequence-form LP from the perspective of 1 player who has currently the worst bound on
the solution quality. More precisely at the end of every iteration a player is chosen who's
upper bound on utility value is farther from the current value of the restricted game.

6.4 Termination

The algorithm terminates, when the whole strategy returned by the best response algorithm
is already contained in the restricted game for both players. This occurs only when the
restricted game already contains all the sequences needed to solve the complete game.

6.5 Main loop

Every iteration of the Double oracle algorithm runs according to following rules

1. Compute the best response for player i to the realization plan of −i from previous
iteration (empty if �rst iteration)

2. Add the sequences from the best response algorithm and form the valid restricted
game, if there is nothing to add, terminate

3. Solve the restricted game using sequence-form LP

4. Choose the player i for the next iteration

6.6 Re�nements in Double oracle

It is important to realize that the Double oracle, when used with re�ned solver, doesn't
guarantee the output consistent with any re�nement, since the solution returned is computed
on the last restricted game. It has therefore no implication on the solution quality in the
complete game, since the restricted game is usually not fully build.

There are two main motivations behind the replacement of the sequence-form LP by the
re�ned solver in the Double oracle algorithm;

(1) The presence of the strategies rational in all parts of the restricted game tree computed
by the re�ned solver should improve the quality of the best response returned by the best
response algorithm. The best response strategy is by de�nition exploitable and the quality
of the strategy to which is the best response computed directly in�uences the quality of the
best response. This e�ectively means that there should be less sequences, irrelevant to the
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�nal solution, added to the restricted game. This should lead to smaller LPs and therefore
faster and less memory consuming computation. This approach is experimentally evaluated
in the next chapter.

(2) The use of the expected values computed by the re�ned solver in all the informations
sets (vector q in all the LP formulations of solvers) for additional pruning in the best response
algorithm. One could argue that we can use these values even from the sequence-form LP.
This is true, however in the sequence-form LP, there is no guarantee of rationality outside of
the equilibrium path, and so these values can be smaller, therefore less precise, than the ones
from the re�ned solver. Since there are separate LPs for each player we have two sources of
these values. When we search for the best response of the player i we can use the values from
the LP where i maximizes, obtaining values in information sets of −i, or from the LP where
player −i maximizes, obtaining values in the information sets of i. As we will show neither
of these values help us when pruning in the best response algorithm. The values over the
information sets of player −i doesn't help us in the pruning, since the best response algorithm
operates directly over the concrete game states of player −i (as shown in Algorithm 1). The
values over information set of i are unuseful, since there is no way to decompose the value
for the whole information set to the values of the concrete game states. Furthermore, these
values are the lower bounds of the values obtainable by the best response algorithm, since
the values from LP are achieved by the strategies consistent with Nash equilibrium. As
mentioned above, the best response doesn't have such constraint, since it is optimal only
against the �xed strategy of opponent, and so the values achievable are greater or equal to
the values obtained from the LP. To make the pruning in the best response more e�cient, we
need values over concrete states of i (these values could be used to tighten the lower bound
of corresponding states, since we are sure they are achievable), or at least an upper bound
of the value achievable in given information set to be used in the computation of the bound
for each state (it could be used in line 15 in Algorithm 2 to tighten the lower bound, since
now the algorithm assumes that every unevaluated state achieves maximal utility). Since
the LP provides neither, there is no signi�cant improvement possible.

This chapter described the Double oracle algorithm. In the next we will present changes
in performance, when the sequence-form LP gets replaced by solver generating one of the
re�nements of Nash equilibrium.



Chapter 7

Results

This chapter discusses the performance changes caused by the replacement of the sequence-
form LP in the Double oracle algorithm by the undominated equilibrium solver. The choice
of undominated equilibrium was based on the results presented in Chapter 5.

7.1 Experimental domains

The experimental domains chosen for this measurement were the Generic poker, Goofspiel
(described in 5.2.2) and Border patrol. They were chosen to demonstrate the performance
of Double oracle in games with di�erent sources of imperfect information. The imperfect
information in poker is caused by the unobservable actions of nature at the beginning of
the game. In the Goofspiel, only the simultaneity of moves causes any uncertainty. In the
Border patrol it is caused by the unobservable moves of the opponent.

7.1.1 Border patrol

Figure 7.1: (a) Border patrol on a connected grid (b) Border patrol on a partially connected
grid

Border patrol represent security scenario with simultaneous moves played on a grid. Two
examples of grids used in the experiments in this chapter are depicted in the Figure 7.1. One
player controls two patrolers, which move on a limited space (groups of nodes labeled P1
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Figure 7.2: Overview of the histograms of Double oracle performance on Generic poker,
over 100 di�erent orderings of actions. The graphs show the histograms for the iterations
needed for Double oracle to converge and the size of the �nal restricted game. The results
for undominated solver are in red, for sequence-form LP in blue.

and P2), and where one attacker tries to move through from the start labeled in the Figure
as E to the goal location, labeled as G. Neither of the players knows the location of his
opponent. The game ends when the attacker reaches the goal, when he gets caught by one
of the patrolers (either by stepping on the same position, or moving through the same edge)
or when a given number of steps takes place. The attackers wins only when he reaches his
goal.

7.1.2 Generic poker

Generic poker is a generalization of Leduc holdem poker described in 5.2.1, with adjustable
deck of cards, number and value of bets and raises and even maximal number of consecutive
raises.

7.2 Experimental setting

We have implemented the Double oracle algorithm and used IBM CLEX 12.5 in both
sequence-form LP and undominated solver. The measurement was performed using 100
di�erent orderings of constraints of both LPs.
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Figure 7.3: Overview of the histograms of Double oracle performance on Goofspiel, over
100 di�erent orderings of actions. The graphs show the histograms for the iterations needed
for Double oracle to converge and the size of the �nal restricted game. The results for
undominated solver are in red, for sequence-form LP in blue.

7.3 Results

The overall results of performance of Double oracle algorithm with undominated solver and
sequence-form LP are depicted in the Figures 7.2, 7.3 and 7.4. The histograms are created
over 100 di�erent orderings of actions (changing the order of constraints in LPs).

The Figure 7.2 shows results for the Generic poker. The experiments were conducted on
poker with varying number of bets (b.), raises (r.) and continuous raise count (c.r.). As we
can see there is no clear dominance between solvers, furthermore the result vary signi�cantly
with di�erent orderings of constraints. The average size of the restricted game needed by
undominated solver is slightly smaller than for sequence-form LP (for example in Generic
poker with 2 b., 2 r., 2 c. r. 11496 sequences for undominated solver and 12218 sequences for
sequence-form LP), the average number of iterations were on the other hand slightly smaller
for sequence-form LP (again for Generic poker with 2 b., 2 r., 2 c. r. 100.82 iterations
for sequence-form LP and 105.12 iterations for undominated solver). There is however no
guarantee that the real performance on some �xed ordering will be consistent with this result.

The Figure 7.3 shows the results on Goofspiel with 4 and 5 cards in every deck. As
we can see there is again no clear dominance of any solver, even though the average values
were consistent with the results on poker. There was additional success of undominated
solver in average number of iterations on the Goofspiel with 5 cards (44.45 iterations for
sequence-form LP and 41.01 for undominated solver).

The Figure 7.4 contains the results on Border patrol with the depth of 5 and 6 and
on two di�erent grids depicted in Figure 7.1. The results are again very similar to poker
for Border patrol on partially connected grid, with a small di�erence in iterations (5.57
for sequence-form LP and 5.73 for undominated solver) needed and with the size decrease
of restricted game diminishing (2547 vs. 2550 sequences for depth 5 and 9320 sequences
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Border patrol
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Figure 7.4: Overview of the histograms of Double oracle performance on Border patrol,
over 100 di�erent orderings of actions. The graphs show the histograms for the iterations
needed for Double oracle to converge and the size of the �nal restricted game. The results
for undominated solver are in red, for sequence-form LP in blue.

vs. 9341 sequences for depth 6). The results obtained for Border patrol on connected grid
however show better average performance when considering iterations, when considering the
size of the restricted game, there is no clear dominance between algorithms.

Finally we provide the overview of time spend solving LPs during the Double oracle
computation depicted in Figure 7.5. These graphs show, that the undominated solver spends
more time solving LPs than sequence-form LP on all domains. This is expected since the
undominated solver needs to solve 2 LPs every iteration, while the sequence-form LP needs
to solve only 1.

The results show that there is no clear dominance between solvers, since the results
overlap each other, due to high sensitivity of CPLEX solver to the ordering of constraints.
When considering the average results, the undominated solver needed smaller restricted game
to solve the complete game (with exception of Border patrol on connected grid, where both
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Figure 7.5: Overview of the histograms of overall time needed to solve all the LPs during the
Double oracle computation. The results for undominated solver are in red, for sequence-form
LP in blue.

solvers achieved similar results), which is a positive result since it implies less memory needed
to solve large domains. It however needs more iterations to successfully converge to Nash
equilibrium (again with exception of speci�c Goofspiel and Border patrol). This, combined
with the fact, that the undominated solver spends more time solving LPs, suggests that one
should prefer the undominated solver when the memory usage is the issue, the sequence-form
LP on the other hand should be used when issues with time needed for solution arise.

7.4 Theoretical analysis

To better understand the reason behind small di�erences between both solvers, let us demon-
strate the run of Double oracle algorithm on the game from Figure 7.6 with both the un-
dominated and the sequence-form solver. Note that this game has 2 Nash equilibria (U,L),
(U,R) but only one undominated equilibrium (U,R).

At the beginning the Double oracle computes the best response for player 1. Since there
is no strategy of player 2 from the previous iteration, the best response algorithm assumes
default strategy r2(L) = 1 (L is chosen because it is the �rst action available in the state
where player 2 plays). As we can see both D and U yield the expected value of 0 against
this strategy and so the choice is based entirely on the implementation of the best response
algorithm. For clarity we will discuss both cases.

Lets assume that the best response algorithm returned U . The restricted game created
is trivial, since it contains only one sequence and so the solver, be it sequence-form LP or
undominated solver, returns strategy r1(U) = 1. In the second iteration the best response
of player 2 to this strategy is computed. But since playing U doesn't lead to the state where
player 2 plays, no sequence for player 2 is added and the algorithm terminates.

In the second case, when D is returned in the �rst iteration, the solver again solves trivial
restricted game consisting of a single sequence D, generating the result r1(D) = 1. In the
second iteration, best response for player 2 to this strategy is again computed, now in the
case where the state where player 2 plays is reached. Since the expected value of L is 0
and expect value of R is 1, the output of the best response algorithm is R. The restricted
game, now containing D and R, has again a trivial solution r2(R) = 1. In the next iteration
player 1 is chosen and the best response algorithm against r2(R) = 1 returns U , since it has
expected value of 0 which is higher then −1 for D. The solver then again solves the restricted
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Figure 7.6: Domain for demonstration of Double oracle with di�erent solvers

game containing R and {D,U} computing strategy r1(U) = 1. In the next iteration the best
response for player 2 doesn't add anything new, since the state where player 2 plays isn't
reached and the algorithm again terminates.

As we can see the above mentioned computation is identical for both solvers, even though
their results are di�erent when applied to the complete game. This fact suggests an explana-
tion for the results in this chapter. The solvers operate on the restricted game, which has a
special structure, since it's iteratively constructed from best responses of players, and so the
situations, where there are mistakes exploitable, are not common. This implies that even
on games where the undominated equilibrium o�ers better behavior than Nash equilibrium,
there is no guarantee of speed-up when considering Double oracle computation.



Chapter 8

Conclusion

This thesis describes normal-form and extensive-form representation of games along with
the overview of existing solution concepts used to solve these games. From these solution
concepts undominated, quasi-perfect and normal-form proper equilibria were experimentally
evaluated on variety of real world inspired games. The description of the Double oracle
algorithm and a proposal of the approach to increase its performance using the most suitable
of the evaluated solution concepts follows. Finally we performed experimental evaluation of
the Double oracle using this solution concept with standard Double oracle algorithm on
domains with di�erent sources of imperfect information.

The experimental evaluation of the re�nements produced several surprising results. First,
all the measured re�nements achieved very similar results, even though their theoretical
performance varies dramatically. The most encouraging implication of this result is that one
can use the undominated equilibrium, which is the easiest to compute, without the need to
worry about the loss of the solution quality. Second, all the re�nements scored very close
to the best achievable value on given domains and against given opponents, which implies
that at least for the zero-sum games there is not much space for improvement of the solution
quality by introducing new, even more complex solution concepts.

Based on the results of the experimental evaluation we have used the solver generat-
ing undominated equilibrium in the Double oracle algorithm and measured its performance
compared to the sequence-form LP on various domains with di�erent sources of imperfect
information. The results obtained by this measurements are however not strictly positive.
Even though the undominated solver provided improvement in the average size of the re-
stricted game needed for solution on almost all domains, there were still exceptions where the
results of undominated and sequence-form solver were almost identical. From the perspec-
tive of iterations is the situation reversed. When using the undominated solver, the number
of iterations was typically higher than when using the sequence-form LP. Furthermore the
results varied dramatically when using di�erent orderings of the constraints in LPs and so
there is no guarantee that one will obtain better values when using undominated solver even
on those domains where it is on average better. This results suggest that in general there
is no motivation to use re�nements in the Double oracle algorithm, since the increase in
performance is not guaranteed, and is often overshadowed by increased resources needed to
compute even the simplest re�nement in comparison to the sequence-form LP. However as
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the results suggest, there exist domains on which the undominated solver o�ers improvement
in both the average size of the restricted game and the average number of iterations needed.

8.1 Future work

This thesis o�ers two straightforward directions for future work. First direction could aim
for deeper analysis of the behavior of the re�nements on more general games, such as general
sum games. Second direction is to further experiment with the Double oracle algorithm,
for example to use some domain speci�c improvements to solve poker or to introduce some
alternative to default strategy to obtain closer bounds on the expected utility in the temporal
leafs along with more reasonable best responses.



Appendix A

CD Content

Attached CD contains source �les of the Game theoretical library, including all the solvers
and experiments implemented as a part of this thesis, along with two runnable jar �les
used for experiments comparing re�nements and Double oracle performance. Note that all
the experiments require IBM CPLEX 12.1 installed to run successfully, furthermore the
re�nement comparison requires Gambit tool [7] installed.

A.1 Game theoretical library

The implementation of the Double oracle algorithm, together with the best response algo-
rithm and solvers, is contained in the package algorithms.sequenceform.doubleoracle. The
class running experiments for comparison of re�nements is called RefCompExperiments and
is located in the package algorithms.sequenceform. The class running experiment for measure-
ment of performance of Double oracle is called DoubleOracleRefExperiments and is located in
the package algorithms.sequenceform.doubleoracle. The implementation of standalone solvers
computing re�nements are located in package algorithms.sequenceform.re�nements. The do-
mains used through this thesis can be found in the package algorithms.domains.

A.2 Parameters of experiments

A.2.1 Re�nement comparison experiment parameters

Following are the parameters needed to successfully run refComparison.jar.

1. Number of samples of the MCTS opponent strategy.

2. Iteration count between samples of MCTS.

3. How many times should be the MCTS rerun.

4. Number of samples of the CFR opponent strategy.

5. Iteration count between samples of CFR.
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6. Domain type:

(a) IIGS (Imperfect-information Goofspiel): number of cards, depth, number of dif-
ferent orderings of the cards in the middle deck

(b) KP (Kuhn poker): no parameters

(c) RG (Random game): max. branching factor, max depth, max. observations,
center modi�cation, utility correlation (true/false), bin. utility (true/false), seed
count

(d) GP (Generic poker): card type count, card count per type

For clarity we provide an example: "java -Djava.library.path="path_to_CPLEX" -jar

refComparison.jar 100 1000 10 100 1000 RG 2 2 2 3 true false 10". This command will
evaluate all the re�ned solvers against MCTS, CFR and QRE opponents on the parametrized
Random game.

A.2.2 Double oracle performance experiment parameters

Following are the parameters needed to successfully run DOPerformance.jar.

1. LP solver (nash/undom)

2. Player selection heuristic (both/single_alt/single_impr)

3. Domain type:

(a) GS (Goofspiel): number of cards, depth, number of di�erent orderings of the cards
in the middle deck

(b) KP (Kuhn poker): no parameters

(c) GP (Generic poker): number of bets, number of raises, number of cont. raises,
card type count, card count per type

(d) BPG (Border patroll): depth

4. number of di�erent orderings of constraints

For clarity we provide an example: "java -Djava.library.path="path_to_CPLEX" -jar DOP-
erformance.jar nash single_imp BP 5 100". This command will run 100× Double oracle
with sequence-form LP, using the player selection described in Chapter 7, on Border patroll
with depth 5.
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